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A new approach for link modelling in wireless multi-hop networks is described for portable
devices, based on Kernel Regression Statistics. A non-parametric estimation of errors in the
wireless medium provides an efficient and accurate model of link errors between any two
nodes. This estimation results from the analysis of the inter-arrival time between any peri-
odically sent packets. The obtained results prove that it is possible to infer on link quality
without having unrealistic assumptions or additional overhead, by using Kernel Methods.
Moreover, similar performances were achieved for different scenarios, without requiring
model recalculations. The presented results show that the proposed link quality estimation
can be used in order to improve wireless connectivity and ubiquity in future networks.
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1. Introduction

The dissemination of new portable devices with en-
hanced communication characteristics has revolutionized
the world in many aspects. Not only on the social side,
where people are connected by their cell phones, personal
digital assistants (PDAs) or laptops, but also on an econom-
ical and professional perspective, where these devices have
introduced new ways of dealing with different situations.
In fact, it is expected that in a near future, users will own
several wireless enabled gadgets [1], demanding infra-
structures or other connectivity alternatives.

Many works have been proposed for the creation of
multi-hop wireless networks with different routing proto-
cols. Despite providing some insights on how to handle
these networks and find communication paths between
different devices, these protocols usually disregard the
environment behind wireless communication, ignoring,
for instance link quality or even energy aspects. With the
. All rights reserved.
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purpose of solving this issue, link metric extensions such
as the Expected Transmission Time (ETT) among many oth-
ers [2], have been added to these protocols. Furthermore,
works more focused on modelling the wireless link speci-
ficities have been proposed, requiring some assumptions
in order to correctly operate in this environment. However,
many of these works’ assumptions render them unrealistic
in scenarios such as search and rescue, where information
about mobility or position awareness is not available.

Taking into account that routing protocols benefit from
knowledge about link quality, optimal route calculation
should avoid poor quality links. Targeting the combination
of the practical sense of multi-hop routing protocols, by
avoiding strict assumptions with a profound and formal
study of a wireless link quality model, will allow an effi-
cient and realistic comprehension of the wireless environ-
ment. This understanding is fundamental for the creation
and development of a new age of wireless interconnected
devices and applications.

Bearing in mind the simplistic approach taken by com-
mon routing protocols, which periodically send routing
probes to detect a wireless link, this work will present an
analysis of the interval between routing messages sent,
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as a link quality evaluation parameter. This will allow a
practical and realistic approach for the link quality evalua-
tion purpose, in conjunction with a thorough theoretical
statistical analysis of a wireless link quality, leading to
the definition of an accurate link quality estimator.
A new approach, using Kernel Regression Estimators, is
proposed for this task, as this method can provide the de-
sired link quality evaluation without requiring unrealistic
assumptions. Such estimator, which results from Kernel
Regression Fitting presented by Wand and Jones [3], has
been implemented and evaluated in the OPNET Modeler
network simulator [4], revealing a significantly precise link
quality estimation in real-time, simply by measuring the
time interval between routing messages.

In Section 2 an analysis of related work regarding link
modelling is presented. The specification of the proposed
model for link quality estimation is introduced in Section
3. The required steps for the calculation of the defined Ker-
nel Model, as well as the validation results for this model,
are specified in Section 4. The final thoughts and insights
on future work are discussed in Section 5.
2. Related work

The estimation of link quality and its availability in
wireless networks is an important feature to consider
in route establishment, in particular, it is more relevant
in mobile ad hoc networks, where link quality variations
are frequent. Several authors have proposed different
approaches concerning the analysis of link availability.

The main drawback of most of the existing works is
either the usage of unreliable parameters, which are prone
to errors and variations, such as signal strength and avail-
able energy, or the requirement of unrealistic or complex
assumptions such as positioning knowledge (for instance
Global Positioning System, GPS coordinates), specific
mobility models and characteristics (i.e. constant speed,
known direction, known epochs), among many others.
However, a relevant contribution from these works is the
proposal of new routing protocols and thorough formal
models which allow a better comprehension of link related
aspects.

Regarding the analysis of link quality taking into
account mobility aspects, Yu et al. [5] rely on the assump-
tion that nodes are able to assess their own mobility
parameters. For instance, knowledge about the nodes’
average speed, pause time, direction and epoch time is
necessary for predicting quality degradation, as well as
the assumption of perfectly symmetric links. Moreover,
this work’s conclusions depend on the used mobility
model, which must be the Random Waypoint Model with
particular specificities such as independent and identically
distributed (i.i.d.) speeds, epochs and directions.

Link lifetime (LLT) [6] estimation can be an extremely
important feature to consider in route establishment. This
aspect is more relevant in network scenarios that consider
mobility where link breakages are frequent. The work pre-
sented by Huang and Bai [6] suggests an approach which
uses a Markov Chain Model to determine the availability
of a link between two nodes, by describing the relative
movement of both, knowing the initial distance between
them. A comparison of the proposed model with previous
works shows that the Markov Chain Model outperforms
other approaches that use the Rayleigh model [7] to pre-
dict node distribution, being able to increase stability in
the construction of clustered networks [8]. However, this
work relies on assumptions such as the knowledge of the
distance between two nodes (either by using GPS or by
analysing signal strength) or even assumptions on link
characteristics considering them always bidirectional
within a distance of R meters, not considering radio irreg-
ularity [9]. Additionally, assumptions on the mobility mod-
el, the Random Walk Mobility Model, are also required,
such as a uniform distribution of speed and direction, as
well as the same mean epoch length for each node.

A two-state Markov Chain Model is also proposed by
Wu et al. [10] for the evaluation of a Single-Node Link Life-
time (S-LLT) using the Random Direction Mobility Model
and assuming that the time duration of each epoch is de-
noted by a random variable that is exponentially distrib-
uted with a known parameter km. Assumptions regarding
bidirectional links, known mobility direction and speed
are also taken, both being uniformly distributed between
[0,2p] and [vmin,vmax].

Link availability is a parameter often considered as a
suitable metric for increasing routing performance in
Mobile Ad hoc NETworks (MANETs). By assuming knowl-
edge about nodes’ direction and position while considering
a constant speed within a Time Period (Tp) and indepen-
dent movements, Jiang et al. [11] propose a link availability
quantity estimation. This estimation is achieved by
exploiting the instantly available velocity, reflecting the
dynamic nature of the link status. The authors also propose
a Tp estimation based on a mobility model that follows the
assumption that terminal mobility is uncorrelated and that
epochs are exponentially distributed with a known mean.
In addition to the mobility related assumptions, all nodes
are expected to know their positions by using GPS devices.

Shu and Li [12] consider node speed in a wireless
network as being responsible for link failure and therefore
poor network performance. A link quality estimation is
achieved by using a simplified version of the Random
Waypoint Mobility Model, where nodes move in an arbi-
trary large area with no obstacles (i.e. no boundaries). It
is also assumed that all nodes constantly move at the same
speed with no pause times and, similarly to other works,
that every link is bidirectional within a radius of R meters.

Another work regarding link evaluation is presented by
Manoj et al. [13], which estimates link lifetime by using a
simple linear regression for path choice in a reactive rout-
ing protocol. However, this work relies on the used propa-
gation model and link specificities such as the transmit
power, channel and frequency, in order to obtain node
positioning knowledge, which is required for the per-
formed link estimates.

The work presented by Zhang et al. [14] has a slightly
different perspective trying to consider LLT determination
taking into account the energy drain rate and relative
mobility estimation of wireless nodes. The presented esti-
mation of route lifetime relies on the assumptions of no
energy limitations in any of the observed nodes and of
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nodes moving in the same direction at a constant speed
considering a short enough period of time. Moreover, it re-
quires node positioning awareness, either by using GPS or
by assuming that transmitted packets are sent with the
same power level as perceived by the receiver, which then
can apply the radio propagation model for distance
calculation.

A comparison summary of the presented link modelling
works is shown in Table 1, using as comparison parameters
the assumptions of each proposal – which can be related
with the mobility model, link characteristics or positioning
knowledge. The accuracy of the used validation scheme
and contribution with a correct formal model are also ta-
ken into account. This table confirms that most of the
existing models have strong and unrealistic assumptions
and, in addition, some fail to provide a proper validation
and formal model.

Not directly related with link quality evaluation, but
closely concerned with mobile networking modelling, an
innovative work is presented by Saeed et al. [15] which
consists on using Neuro-Fuzzy Modelling and Neural Net-
work Modelling for analysing the behaviour of different
routing protocols, namely the Dynamic Source Routing
(DSR) [16], the Ad hoc On-Demand Distance Vector (AODV)
[17] and the Optimized Link State Routing (OLSR) [18] Pro-
tocols in MANETs with variable and attainable parameters
such as the number of nodes or mobility. This work pro-
vides Empirical Equation Models by analysing quantitative
data using polynomial and multiple linear regressions. The
authors use the network’s context (node number and
mobility) as inputs in conjunction with the network’s per-
formance (delay, routing delivery rate, routing packets
delivery rate and routing load) as outputs for modelling.
The modelled results are obtained by using simulation data
for each parameter and routing protocol, showing the main
differences between the empirical equations, neural net-
works and Neuro-Fuzzy Models. Despite not presenting
validation results compared against the presented models,
the proposed models (Neural Networks and Neuro-Fuzzy)
are both efficient and accurate in representing wireless
networks’ features without requiring any simplifications
of their complex and dynamic aspects. The main disadvan-
tage of using these methods is that they require previous
training.

In the following section a new link quality estimator
is presented, using Kernel Methods to provide a feasible
alternative to the existing models, without assuming
known mobility patterns, positioning information nor
link specific characteristics. Moreover, a formal model
Table 1
Wireless link modelling.

Existing Assumptions on

Approaches Mobility Link P

Yu et al. [5] U U �
Huang and Bai [6] U U U

Wu et al. [10] U U U

Jiang et al. [11] U U U

Shu and Li [12] U U �
Manoj et al. [13] � U U

Zhang et al. [14] U U U
for this estimator and a proper validation are also
presented.

3. An accurate model for link quality estimation

This work is focused on the usage of local polynomial
Kernel Estimators for the determination of link quality. In
fact, by simply analysing the time interval Dt reception
of periodical routing messages, an accurate model for link
quality estimation is derived. This technique allows an effi-
cient model that does not considered unrealistic
assumptions.

Kernel Estimators are applied by Kushki et al. [19] for
positioning purposes in Wireless Local Area Networks, by
creating ‘‘fingerprints’’ using the received signal strength
(RSS). The results presented show that Kernel Regression
is an efficient solution for such scenarios, thus motivating
further usage of Kernel Methods in wireless modelling.
Considering Link Quality, Kernel Methods will allow,
through the use of existing routing or signalling messages,
the determination of a link quality model estimator. The
purpose is to analyse the interval between these periodi-
cally received messages and based upon them, estimate
the quality of the used wireless link. These periodic mes-
sages can be obtained, for instance, from the routing proto-
col or from Layer-2 messages, such as beacons.

In particular, focusing on the OLSR protocol, it periodi-
cally sends HELLO messages with an interval of 2 ± d,
d 2 X � U(0,0.5) seconds, being d an added delay following
a uniform distribution between 0 and 0.5 s. These mes-
sages are sent so that new links and lost links are regularly
detected. The random factor is added in order to try to
avoid nodes from sending routing packets at the same
time, which would cause several collisions in the wireless
medium. The expected average interval between HELLO
messages in a perfect connection would be exactly
EðX ¼ cDtÞ ¼ 2 s. However, as packet collisions and interfer-
ences exist, errors may occur, resulting in lost packets.
Throughout this work, the Quality of a Link will depend
on the number of lost packets, between two received HEL-
LO messages, therefore, a link without packet losses has
perfect link quality. The link quality is defined by the fol-
lowing equation:

Link QualityDt ¼
1

1þ packets lost
: ð1Þ

Even though this work focuses on the number of packet
losses for the link quality assessment, other parameters
could be considered. For instance the delay between a sent
Proper validation Formal model

ositioning

U �
� U

U U

U U

� U

� U

U �
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and received HELLO or even the number of Layer-2 retrans-
missions could be used to classify the quality of wireless
link. However the delay between two neighbour nodes is
very small, since they are directly connected, and Layer-2
retransmissions may not exist in several scenarios such
as in real-time video streaming networks.

The time interval between a packet being sent and re-
ceived depends not only on propagation characteristics,
but also on the number of required packets sent until
one is properly received, as depicted in Fig. 1. Fig. 1a repre-
sents a link quality of 100% for Dt1, Dt2 and Dt3, while in
Fig. 1b, Dt1 has a link quality of 100% and in Dt2 the link
quality is only of 50%. These errors are more prone to occur
when a poor link quality is registered. By measuring the
interval between consecutive HELLO messages, an estima-
tion of the link quality can be retrieved using Kernel
Regression Estimation.

As previously mentioned, the estimators used in this
work are from the class of Kernel-type regression, which
allows the estimation of a least-squared weighted regres-
sion function m̂ðx; p;hÞ, that ‘‘locally’’ fits a pth degree poly-
nomial, for a given data set (x,y) [3], where h is the
smoothing or bandwidth parameter. In this work, the
(x,y) data set consists of the tuple Dt and link quality
respectively.

Kernel Methods and, in particular, Kernel Regression
methods are also called memory-based methods, because
they require keeping or storing the entire training set to
estimate or compute future data points. In fact these meth-
ods fit a model separately at each data point xi, and only
data points close to xi are used to fit the above mentioned
model. This fitting process results in an estimated function
smooth in R. In this work the training set is not required
after the model calculation as no further data points need
to be computed, thus solving the possible memory
limitation.

Other regression functions related with Kernel Regres-
sion are the K-Nearest Neighbour (KNN) classification,
State Vector Machines (SVMs), Neuro-Fuzzy Models and
Radial Basis Functions (RBFs), which may not be so robust.
For instance, on the classification RSS based fingerprints,
Kushki et al. [19] do not consider the KNN approach, as it
presents a poor performance when training vectors are
nonconvex and multimodal. Also, previously used SVMs
and RBFs have shown no resilience in scenarios with highly
dynamic wireless settings, where MANETs should be
included.
Fig. 1. Periodic routing message exchange.
Being m the true regression function of the real link
quality observed, the random regression model can be
written as m(x) = E(QjX = x), representing the conditional
expectation of variable Q relative to a variable X. From this
point forward, q will correspond to the link’s quality ob-
served between two nodes and x will be the Dt between
measured routing messages (Q and X will be the estimated
values).

The Kernel function K is a non-negative real-valued
integrable function defined to be smooth with a maximum
at 0 and with the following constraint:Z þ1

�1
KðxÞdx ¼ 1 and Kð�xÞ ¼ KðxÞ; 8x 2 R: ð2Þ

Two commonly used Kernels are the Epanechnikov Ker-
nel and the Gaussian Kernel [3] presented in Eqs. (3) and
(4) respectively.

Khðxi � xÞ ¼ 3
4

1� jxi � xj
h

2
 !

jxi�xj
h 61

� �; ð3Þ

Khðxi � xÞ ¼ 1ffiffiffiffiffiffiffi
2p
p e�

1
2
jxi�xj

h

2

: ð4Þ

As previously mentioned, the Kernel Regression Fitting
depends on a smoothing parameter h, usually referred to
as bandwidth. The choice of a correct bandwidth is extre-
mely important to prevent under or over fitted estima-
tions. A bandwidth selector, as defined by Wand and
Jones [3], is a method that uses the data X1, . . . ,Xn to pro-
duce a bandwidth ĥ. Typically, bandwidth selectors are di-
vided in two different classes, the quick and simple and hi-
tech selectors. The first class of selectors provide an accept-
able bandwidth value, without any mathematical guaran-
tees, thus being disregarded in this work. The hi-tech
selectors are computationally more complex and aim at
finding optimal bandwidth values, which will be presented
later in this work.

With Kernel Regression, at point x the estimator
m̂ðx; p;hÞ is obtained through the fitting of b0 + b1(� � x) +
� � � + bp(� � x)p to (xi,Qi) using the least squares with
Kh(xi � x), which acts as a weighting function in the fitting,
such that b̂ ¼ ðcb0 ; . . . ;cbpÞ

T minimises:Xn

i¼1

fQ i � b0 � � � � � bpðxi � xÞpg2Khðxi � xÞ: ð5Þ

Considering b̂ ¼ XT
x WxXx

� ��1
XT

x WxQ , as defined by
Jones and Watson [3], it is the solution obtained by the
standard weighted least squares theory, assuming that
XT

x WxXx is invertible, where Q = (Q1, . . . ,Qn)T is the vector
of responses,

Xx ¼
1 x1 � x � � � ðx1 � xÞp

..

.
� � � . .

. ..
.

1 xn � x � � � ðxn � xÞp

2664
3775 ð6Þ

is an n � (p + 1) matrix and Wx = diag{Kh(x1 � x), . . . ,
Kh(xn � x)} is an n � n diagonal matrix of weights.

In this work, a 1st degree polynomial estimation was
used, so the local linear estimator m̂ðx; 1;hÞ is defined by
the following equation:



Table 2
Obtained Kernels.

Epanechnikov Gaussian

Bandwidth 0.3217648 0.1557449
ASE 0.0006754408 0.0006754788
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n�1
Xn

i¼1

bs2ðx; hÞ � bs1ðx; hÞðxi � xÞ
� �

Khðxi � xÞQ ibs2ðx; hÞ bs0ðx; hÞ � bs1ðx; hÞ2

where

bsr ðx; hÞ ¼ n�1
Xn

i¼1

ðxi � xÞrKhðxi � xÞ; 8r 2 0;1;2: ð7Þ

In order to guarantee the quality of the obtained Ker-
nels, some of the most commonly used optimality hi-tech
criteria for selecting a bandwidth matrix will be consid-
ered. These are, for instance, the Mean Integrated Squared
Error (MISE) and the Averaged Squared Error (ASE), which
is used in this work.

ASEðhÞ ¼ m̂h ¼
1
n

Xn

j¼1

fm̂hðXjÞ �mðXjÞg2wðXjÞ: ð8Þ

The ASE is a discrete approximation of the Integrated
Squared Error (ISE) which has been shown by Marron
and Härdle [20] to lead asymptotically to the same level
of smoothing as the ISE and MISE. Therefore, without sig-
nificant loss of performance and knowing that it is the eas-
iest to calculate and handle [21], the ASE is clearly an
appropriate bandwidth selector.

4. Model parametrisation and validation

Having defined the main theoretical aspects of the pro-
posed link quality estimator model, this section aims at
presenting the necessary steps to obtain traces generated
by simulation until the final link quality estimation results
are reached. Moreover, an implementation of the proposed
Kernel Estimator in the OPNET Modeler Wireless Suite� [4]
network simulator is also presented with the purpose of
validating the estimated link quality values.

4.1. Link quality estimator calculation

With the purpose of obtaining data traces for the pair
(x,q) required by the previously defined model, x being time
interval Dt between routing messages and q the link qual-
ity, several simulations were performed using the OPNET
simulator. These traces were gathered from two nodes
placed at several fixed distances (60 m,65 m, . . . ,120 m).
The Kernel Based Model is calculated using the traces and
its robustness is presented in the next section.

For each measured distance, 10 h of routing traffic were
simulated using the OLSR Protocol with a total of 50 runs,
using different seed values. The physical layer of the wire-
less nodes follows the IEEE 802.11 g (54 Mbit/s), uses a
transmit power of 3.6 � 10�4 W and a packet reception-
power threshold of �95 dBm, which results in a theoretical
maximum range of 100 m [22]. The actual range may vary
as the OPNET simulator implements by default an accurate
radio model where asymmetric links or even unidirec-
tional links may occur, as well as channel errors and mul-
ti-path interferences.

The R statistical language [23] was used together with
the ‘‘locpol’’ package [24] in order to perform the required
bandwidth computations and regression fitting. The
obtained bandwidths and ASE errors are presented in
Table 2. Both Epanechnikov and Gaussian Kernels were
used in order to analyse the main differences between
them. Figs. 2 and 3 depict these two Kernels and their main
characteristics. The two figures include the time intervals
up to a maximum of 6s, corresponding to the OLSR maxi-
mum hold time for a link, such that the registered link er-
ror percentages are always bellow 100%.

Fig. 2 presents the Regression obtained by using the
Epanechnikov Kernel. The density of values obtained for
each time interval, x density, is depicted in Fig. 2b. It is
clear that the density is higher for lower time intervals, be-
tween 1.5 and 2.5 s, as they correspond to a better link
quality with less errors and therefore more delivered pack-
ets. On the other hand, for higher time intervals, density
variations occur due to the physical layer specific opera-
tions, such as transmission retries, which influence the fi-
nal packet delivery. Moreover, as it would be expected, at
larger distances higher time intervals are registered and
there is a steep increase of the number of losses [25,26].

In order to better illustrate the significance of the pro-
vided estimation, Fig. 2c and d depicts respectively the cal-
culated variance for each estimated value as well as a 95%
confidence interval, showing that the chosen bandwidth
value, obtained by minimising the ASE, provides good final
estimations.

Fig. 3 depicts the obtained results using a Gaussian Ker-
nel for the same trace values. It is possible to verify that the
Gaussian Kernel Estimation provides a smoother regres-
sion, while keeping similar estimated values throughout
the x-axis. This aspect is particularly noticeable in Fig. 3c
and d, which show a slightly better estimation when com-
pared with the Epanechnikov Kernel, despite both having
used the same method for bandwidth calculation.
4.2. Model validation

While a formal model is itself a contribution for the rep-
resentation of a reality, its final application in a realistic
scenario is also important, as well as its precision. The pro-
posed Link Estimation model has no unrealistic assump-
tions, requiring only the measurement of the time
elapsed between receiving two consecutive routing mes-
sages, disregarding the protocol itself. Having this in mind,
the obtained Kernel Estimators were implemented in the
OPNET simulator and link quality estimations were per-
formed in real time in two different mobility scenarios,
presented next. It is important to note that any other sce-
nario and mobility models could be used without requiring
any recalculation of the obtained models, as long as the
wireless physical layer specifications are maintained. De-
spite having used traces from static nodes to perform the
Kernels Calculation, they are still suitable for any scenarios
with or without mobility.



Fig. 2. The Epanechnikov Kernel Regression results.
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An exhaustive evaluation was performed, where each
Link Quality Kernel Estimation was ran 50 times, using dif-
ferent seed values, with a total time of 10 simulated hours
per run for each scenario. The two used scenarios are rep-
resentative of different circumstances where mobile ad hoc
networks can be found, using two distinct mobility models.
4.2.1. High density scenario
For the validation process, a scenario was created with

ten nodes moving freely in an area that exceeds more than
twice the area covered by the nodes’ maximum range
(240 � 240 m). The nodes follow the Random Waypoint
Mobility Model with a uniform speed between 3 and
30 km/h, corresponding to pedestrians’ walking speed or
moderate driving [27] with a pause time of 100 s. This sce-
nario represents a dense area which is prone to have more
packet collisions and therefore errors. While it is a more
academic scenario, it allows a thorough validation of the
obtained Kernel Estimators.
4.2.2. Oulu scenario
A more complex scenario was also created using Syn-

thetic Map-based Mobility Traces [28] allowing the defini-
tion of mobility traces according to real-world locations.
This was obtained using the Bonnmotion tool [29] and
the Random Street Model specifying a total area of
3000 � 3500 m, with 30 moving nodes in Oulu, Finland.
Again, the used speed corresponds to pedestrian walking
or moderate speed driving (uniform speed between 3 and
30 km/h with a pause time of 100 s), creating a fairly real-
istic scenario. The obtained trajectories are depicted in
Fig. 4.



Fig. 3. The Gaussian Kernel Regression results.

Fig. 4. Oulu mobility trajectories.
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Table 3
Combined results (50 runs).

Random waypoint Random street

Average link errors Standard deviation Total difference Average link errors Standard deviation Total difference

Real values 0.0198374 0.00254325 – 0.0190814 0.0211598 –
Epanechnikov 0.0193507 0.00234906 0.0004867 0.0184662 0.0196664 0.0006152
Gaussian 0.0195183 0.00234445 0.0003191 0.0186297 0.0195614 0.0004517
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Fig. 5. High density scenario-real-time performance.
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4.2.3. Validation results
The wireless link quality is influenced by the amount of

errors that may occur when transmitting a packet. For each
simulated run, all the generated packets have been regis-
tered, as well as all the link quality estimations made by
the used models. By comparing, per link, the amount of
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Fig. 6. Oulu scenario-real
packets with errors (i.e. not received) and the determined
link quality, it is possible to assess the performance of
the estimators.

Comprising all the validation results (from 50 runs),
Table 3 shows the overall link error percentage for both
Kernel Based Estimations and real values. This table
20000 25000 30000
e (seconds)

Epanechnikov Kernel
Gaussian Kernel

-time performance.
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presents the actual average link quality and standard devi-
ation registered by analysing all the generated packets
next to the results obtained by both the presented link
quality estimator models for both scenarios. As it can be
seen, both Kernel Estimators performed extremely well in
a realistic implementation in two different scenarios. It is
worth noting that the difference between real and esti-
mated errors is small, proving the quality of Kernel Meth-
ods as estimators and highlighting their generalisation
properties. Furthermore, it has been shown that the pro-
posed model does not require traces obtained with mobil-
ity for a good performance, further proving its quality and
applicability.

Being able to determine the amount of link errors in
real-time is an important feature of link quality estimators.
All the presented results were obtained instantaneously
during the performed simulations, as no recalculation is
needed for any scenario. For example, in the high density
scenario, the average difference between the real link er-
rors and the estimated errors is represented in Fig. 5. This
figure shows the performance of both the Epanechnikov
and Gaussian Kernel Estimators and, despite being quite
small even at the beginning of the simulation (less than
0.12%), the difference between the estimated and true er-
ror percentage gets even smaller through time, for both
Kernels.

Similar results are presented in Fig. 6, showing that for a
more realistic scenario the performance is maintained.
However, despite being very small, a fluctuation is regis-
tered, suggesting that the dynamic characteristic of this
scenario may present different link behaviours that the
used model estimators were still able to cope with.
5. Conclusion

A new model for link quality estimation has been pro-
posed, without requiring any unrealistic assumptions. This
model was derived from Kernel Regression Estimation
techniques, which resulted in an accurate estimation of
the wireless link quality obtained through the statistical
analysis of routing packets’ inter-arrival times, using
Kernel Methods. Such results are extremely relevant for
future wireless communications, allowing routing proto-
cols to choose the best available links without additional
messages overhead or imposed limitations.

The presented results prove that any routing protocol or
periodically sent messages (e.g. Layer-2 messages) can be
used with the presented model. This was demonstrated
by using two different Kernel Regression Estimators, which
were able to successfully determine, in real-time, the qual-
ity of wireless ad hoc links, being the Gaussian Kernel the
most accurate.

A major contribution of the defined model is that its
adaptable approach is capable of providing accurate esti-
mations for any given scenario. This property has been
shown by using two distinct mobility models, without
recalculating the Kernel Estimators. Therefore the inclu-
sion of Kernel Regression Estimators has proved itself as
a suitable option for link quality modelling in wireless
networks.
An important conclusion is that both the resulting
Kernel Estimators were able to provide realistic estimates
in scenarios with different types of mobility and node den-
sity. This suggests that in a real scenario the required
traces can easily be obtained and used in a myriad of situ-
ations. In addition to this, Kernel Methods do not require
any training (supervised or not), being therefore more effi-
cient than other techniques such as neural networks.
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