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Abstract— Catadioptric cameras combine conventional cam-
eras and mirrors to create omnidirectional sensors providing
360o panoramic views of a scene. Modeling such cameras has
been subject of significant research interest in the computer vi-
sion community leading to a deeper understanding of the image
properties and also to different models for different types of
configurations. Visual servoing applications using catadioptric
cameras have essentially been using central cameras and the
corresponding unified projection model. So far only in very few
cases more general models have been used. In this paper we
address the problem of visual servoing using the so-called the
radial model. The radial model can be applied to many camera
configurations and in particular to non-central catadioptric
systems with mirror shapes that are symmetric around the
optical axis. In this case we show that the radial model can be
used with a non-central catadioptric camera to allow effective
image-based visual servoing (IBVS) of a mobile robot.

Using this model, which is valid for a large set of catadioptric
cameras, new visual features are proposed to control the degrees
of freedom of a mobile robot moving on a plane. Several
simulation results are provided to validate the effectiveness of
such features.

I. INTRODUCTION

In order to overcome the problem of keeping the features

in the camera field of view (FOV), several methods have been

developed namely: based on path planning [15], zoom adjust-

ment [4], switching control [6]. More simple and different

approaches consist on using omnidirectional vision sensors to

increase the FOV using mirrors. Wide-angle cameras include

catadioptric systems that combine mirrors and conventional

cameras to create omnidirectional images providing 360o

panoramic views of a scene, or dioptric fish-eye lenses [3],

[8]. Lately they have been subject of an increasing interest

from robotics researchers [10], [13], [7], [20], [17].

In practice, it is advantageous that omnidirectional imag-

ing systems have a single viewpoint [3], [18]. In those sys-

tems there exists a single center of projection, so that every

pixel in the image measures the irradiance of the light passing

through the same viewpoint. Central imaging systems can

be modeled using two consecutive projections: spherical

and then perspective. This geometric formulation, called the

unified model, was proposed by Geyer and Daniilidis in [9]
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and include the classical perspective projection model. Many

works in visual servoing are based on this model. In [20],

an IBVS using invariants to rotational motion to control the

translational degrees of freedom (DOFs) is proposed. In [10],

the authors consider the problem of controlling a 6DOFs

holonomic robot and a non-holonomic mobile robot from

the projection of 3-D straight lines in the image plane on

central catadioptric systems. Mariottini et al in [13] propose

an IBVS based on the auto-epipolar condition, which occurs

when two catadioptric views (current and desired) undergo a

pure translation. The proposed approach is applicable to the

autonomous navigation of a mobile holonomic robot.

Unfortunately, only few configurations lead to a single-

viewpoint catadioptric system [3]. Obtaining the forward

projection model for the general case of a non-central

catadioptric camera is still an open problem in computer

vision. This is considered a hard problem and iterative

solutions are usually employed to determine the reflection

point on the mirror. Recently, a forward projection model

has been proposed for the case of non-central catadioptric

cameras consisting on a perspective camera and a rotationally

symmetric conic reflector [1]. In the latter work, the optical

path from a given 3D point to the given viewpoint is obtained

by solving a 6th degree polynomial equation for general

conic mirrors. For a spherical mirror, the forward projection

equation reduces to a 4th degree polynomial, resulting in a

closed form solution. In [2], an analytical forward projection

equation for the projection of a 3D point reflected by a

quadric mirror into the image plane of a perspective camera,

with no restrictions on the camera placement is derived.

They show that the equation is a 8th degree polynomial in

a single unknown. In absence of an analytical and simple

forward model, the determination of some elements like

the interaction matrix required for image-based servoing

becomes difficult.

For scene reconstruction or control purposes, a complete

knowledge of of the projection model is not always required.

In [22], a technique to linearly estimate the radial distortion

of a wide-angle lens given three views of a real-world plane

has been proposed using the radial projection model. Based

on [22], linear methods for the estimation of multi-view

geometry of 1D radial cameras have been studied in [17] and

[21]. In this paper, it will be shown that the simple radial

projection model can be sufficient for mobile robot control

using a large family of catadioptric cameras. More precisely,

the contributions of this paper are:

• An image-based visual servoing method for mobile

robots moving on a plane, valid for a large set of



catadioptric cameras (including radially symmetric non-

central cameras) is proposed;

• Using the radial model, new visual features with decou-

pling properties are derived;

• An efficient image-based visual servoing approach

based on the desired value of the interaction matrix is

proposed.

In the next section, the mathematical background of this

paper is detailed. In Section 3, new visual features are pro-

posed. Finally, in Section 4, simulation results are presented.

II. BACKGROUND

A. Radial camera model

In this paper, we consider an axial symmetric catadioptric

system as shown in Figure 1. The system is made up of

a pinhole camera and a rotationally symmetric mirror. The

camera is positioned in such a way as to have its optical

axis aligned with the mirror axis. Using the radial projection

model, 3D point P = (X , Y, Z) is reflected first on a point

on the mirror Pr = [Xr Yr, Zr] before being projected into

point xm = (xm, ym, 1) = Pr
Zr

in the image plane, expressed in

metric coordinates. Point xm is projected into the catadioptric

image at xd = (xd , yd , 1) = Kxm expressed in pixel (K is the

matrix of the camera intrinsic parameters, with the x and y

focal lengths, principle point coordinates and zero skew).

From the laws of reflection, we have: (a) vector n, the center

of the projection c, the 3D point P and Pr belong to the

same plane π as shown in Fig. 1, (b) the angle between the

incident ray and n is equal to the angle between the reflected

ray and n. In [21] and [17], the intersection of the planes π
defined by the image points from multiple views has been

used to recover linearly the structure of the scene.

The mirror is rotationally symmetric, and therefore the

optical axis also belongs to π . Further, for symmetry reasons,

the center of the image distortion (crad) and the principal

point coincide. In this paper, the coordinates of the image

points are normalized so that they belong to the unit circle

xn = xm
‖xm‖ . The normalized coordinates of the pixels will

be used in the derivation of the new features and image

servoing algorithm. The computation of xn from the image

points expressed in pixel only requires the knowledge of

the principal point coordinates (which coincides with the

distortion center) and the ratio of the focal length parameters.

The division by ‖ xm ‖ implies that only the ratio between

the two focal lengths needs to be known. The distortion

center can be approximated by the center of the mirror border

(assumed to be a circle or an ellipse) [14].

Let xu = (xu, yu, 1) = P
Z

be the point coordinates in metric

units of the projection of P using pinhole model as shown in

Fig. 1. Since the center of the pin-hole camera and P belong

to plane π , the point xu also belongs also to the intersection

of this plane with the image plane. Therefore, crad, xu and

xm belong to the same line. We have then xn = xu

‖xu‖ , which

leads to:

xn =

[
xn

yn

]
=

1√
X2 +Y 2

[
X

Y

]
(1)

Fig. 1. Axial catadioptric system

Note that xn is not defined only if the 3D point belongs to

the camera optical axis (which does not happen in the case of

the catadioptric camera). In the following xn will be used to

define new visual features to control the motion of a mobile

robot moving on a plane.

B. Visual servoing

Recall that the time variation ṡ of the visual features s can

be expressed linearly with respect to the relative camera-

object kinematics screw:

ṡ = Lsτ, (2)

where Ls is the interaction matrix related to s. In visual

servoing, the control scheme is usually designed to reach an

exponential decoupled decrease of differences on the visual

features to their desired value s∗. If we consider an eye-

in-hand system observing a static object, the corresponding

control law is:

τc =−λ L̂s

+
(s− s∗), (3)

where L̂s is a model or an approximation of Ls, L̂s

+
the

pseudo-inverse of L̂s, λ a positive gain tuning the time

to convergence, and τc = (vc,ωc) the camera velocity sent

to the low-level robot controller. In practice the matrix L̂s

could be chosen as the current value of the interaction

matrix Ls. This choice (except in the case of a singularity)

ensures an exponential decrease of the error on features

in image. Unfortunately, further to the problem of local

minima and singularities, computing the exact current value

of the interaction matrix requires the knowledge of the

depth information. Determining this information can be time

consuming, but also subject to instabilities. In order to avoid

these problems, using the desired depth information values in

Ls can be an alternative (i.e Ls(Z
∗) ). Unfortunately, in that

case, the exponential decrease of the features errors in the

image will no longer be ensured. Furthermore, if the value

of L̂s changes, its pseudo-inverse should also be computed

at each iteration, which also can be time consuming if the

size of the features vector increases significantly.



To avoid computing the depth information and inverting

L̂s at each time that the velocities have to be computed,

a straightforward choice is to use the constant matrix Ls∗

computed for the desired pose. Using Ls∗ also permits to

avoid the problem of the singularities (except if the desired

position corresponds to a singular value of Ls∗ ). Despite the

mentioned advantages above, in practice using Ls∗ ensures a

local and limited domain of convergence around the desired

position as compared to the case where Ls is used. Further,

the behavior of the feature errors in the image as well

as in 3D space is neither always predictable nor always

satisfactory. Combining Ls∗ and Ls in a single control law

has been studied in [11] and [12] to improve the stability

and 3D behavior. Unfortunately, once again, and as far as Ls

is involved in the control law, the depth information has to

be determined and L̂s to be inverted.

Actually, the limited domain of convergence and the

unpredictable behavior obtained using Ls∗ results, in large

part, from the problem of the tensor frame change. Indeed,

Ls∗ expresses the variations of features as a function of the

camera velocities expressed in the desired frame. There-

fore, if the current and the desired frames have different

orientations, the tensor change of frame has to be taken

into account since the velocities are to be applied in the

current camera frame. This problem has been highlighted

in [19] for instance. More precisely, instead of using the

average L̂s =
Ls∗+Ls

2
, as proposed in [11], [19] proposed

to use L̂s =
Ls∗+Ls T−1

2
after integrating the spatial motion

transform T. In this paper we exploit the same idea to only

use the desired value of the interaction matrix in the control

law. More precisely, the velocity computed using L̂s = Ls∗

in the control law (3) has to be multiplied by a spatial

transformation T. A method to effectively approximate the

tensor change of frame in the case of a mobile robot (to avoid

reconstructing depth data and inverting L̂s at each iteration

of the control loop) will be described next.

III. VISUAL FEATURES SELECTION AND CONTROL LAW

In the next paragraph, new visual features are proposed

and their corresponding interaction matrices derived. A con-

trol law using the desired values of the interaction matrices

is also proposed and derived.

A. Visual features

1) Features to control camera translational velocities: In

order to control the translational motion of the camera, we

use the inner product between two points xni and xn j in the

image:

ci j = x⊤n i xn j (4)

Taking the derivative of (4), one obtains:

ċi j = x⊤nj ẋni +x⊤ni ẋnj (5)

The interaction matrix corresponding to xn can be obtained

by taking the derivative of (1):

Lxn =
[

Lxnv Lxnω

]
(6)

with:

Lxnv =




− (1−x2
n)√

X2+Y 2

xnyn√
X2+Y 2

0

xnyn√
X2+Y 2

− (1−y2
n)√

X2+Y 2
0


 (7)

and

Lxnω =

[
−xnynzn −(1− x2

n)zn yn

(1− y2
n)zn xnynzn −xn

]
(8)

where d =
√

X2 +Y 2 and zn = Z/
√

X2 +Y 2. By combining

(6) and (5), the interaction matrix Lci j
= [Lci jv Lci jω ] corre-

sponding to ci j can be then obtained by:

Lci jv =
[
(−1

d j
+

ci j

di
)x⊤n i +(−1

di
+

ci j

d j
)x⊤n j 0

]
(9)

and

Lci jω =
[

yn jzi j + yniz ji −xn jzi j − xniz ji 0
]

(10)

where zi j = zni − ci jzn j and z ji = zn j − ci jzni. From (9) and

(10), it can be seen that ci j is invariant to the motion around

the optical axis. We assume that the camera is mounted on

the mobile robot so that the translational motion takes place

on the plane defined by the vectors x and y of the camera

frame. Therefore, only the first two entries of the matrix Lci jv

are useful for the control of the translational motion with

respect to the x-axis and the y-axis. In the next paragraph,

we explain how to select an adequate feature to control the

remaining DOF, namely the rotation around the optical axis.

2) Features to control camera rotation: A natural feature

in the image that can be computed from points xn to control

the rotation of the robot on a plane is:

α = atan2(yn,xn) (11)

The time variation of α can then be obtained by:

α̇ =
xn ẏn − yn ẋn

x2
n + y2

n

= xn ẏn − yn ẋn (12)

By combining (12) and (6), the interaction matrix corre-

sponding to α can be obtained by:

Lα =
[

yn

d
−xn

d
0 xn zn yn zn −1

]
(13)

From (13), we can notice the direct link between α and

the rotation around the z-axis. For the sake of robustness,

all projected points xn have to be used. A simple way to

do it is by stacking all the angles αi in a feature vector. A

better choice can be combining all the points in a single and

unique feature to control the rotation around the z-axis. A

straightforward and simple way to use all the rotation angles

could be using their average αa = 1
N ∑N

i=1 atan2(yni,xni).
Such feature is directly related to ωz. However, the arithmetic

average of rotations does not correspond to the real average

of rotations, especially when the difference between the

rotations considered is large. For instance, for a rotation

angle close to π , and due to the effect of noise or due to

translational motion, the computed rotation angles can have

opposite signs. Therefore, the rotation angle corresponding to

their arithmetic mean would have a value close to 0 instead

of π or −π generating some discontinuities in the estimation



of αa. In this paper, we propose to define a rotation angle

αm for a point computed as a linear combination of the point

projections on the circle. Let p1 be the point defined by:

p1 =
N

∑
i=1

aixni (14)

From p1, we define a new point v1 belonging to the unit

circle by:

v1 =
p1

‖ p1 ‖
(15)

By taking the derivative of (15), the interaction matrix

corresponding to v1 can be obtained by:

Lv1
=

I2 −v1 v⊤1
‖ p1 ‖

N

∑
i=1

aiLxni
(16)

Let αm be the angle defined by:

αm = atan2(v1y,v1x) (17)

By taking the derivative of (17), it can be obtained:

α̇m = v1xv̇1y − v1yv̇1x (18)

By combining (18) with (16), Lαmωz =−1 is obtained. As a

result one can conclude that αm varies linearly with respect

to the velocity ωz.

a) Computation of the parameters ai : In order to

define point v1 on the unit circle, we need to determine the

parameters ai. More precisely, we have to define a virtual

point p∗
1 and next represent it as a linear combination of

the desired projected points on the circle x∗ni. For the sake

of simplicity, p∗
1 is chosen to be unitary (‖ p∗

1 ‖= 1 then

v∗1 =
p∗1

‖p∗
1
‖ = p∗

1). Let p∗
2 be also a unit vector perpendicular to

p∗
1. As a result p∗

1 and p∗
2 form a direct orthogonal frame basis

V∗ = [p∗
1; p∗

2]. It is possible to represent any given frame

basis V∗ as a linear combination of the coordinates of a set

of points. For instance, V∗ could be set as the desired frame

of the camera. In any given frame basis V∗, each projected

point onto the circle can be expressed as:

x∗ni = b1iv
∗
n1 +b2iv

∗
n2 (19)

Let B be the 2×N matrix that defines the coordinates of all

the projected points on the new frame basis. We have:

x∗nt = V∗ B (20)

where x∗nt = [x∗n1 x∗n2 . . .x
∗
nN ], and B= V ∗⊤x∗nt . From (20), V ∗

can be represented as a linear combination of x∗nt by:

V ∗ = x∗nt B+ (21)

B+ is a N×2 matrix corresponding to the pseudo-inverse of

B. Therefore, the ai and can be chosen as the first columns

of B+.

Fig. 2. Camera frame positions

B. Control law

Let sc be the feature vector obtained by stacking the fea-

tures ci j and s∗c their desired values. Let Lsc be the interaction

matrix obtained by stacking the two first entries vx and vy

of the interaction matrix corresponding to each feature ci j.

Only the two first entries are taken into account because we

are only concerned with a planar motion and ci j is invariant

to the rotation around z-axis. Let us consider that the goal

is to move the desired camera position towards the initial

one. Therefore, the velocities that have to be applied to the

camera desired position using its corresponding interaction

matrix are obtained from:



[
v∗x
v∗y

]
=−λL+

sc∗(s
∗
c − sc)

ω∗
z = λ (α∗

m −αm)−Lαmvx∗ v∗x −Lαmvy∗ v∗y

(22)

where Lαmvx∗ and Lαmvy∗ represent the variation of αm

with respect to the velocities vx and vy respectively. Let

us consider the three frames shown in Figure 2. Let Fc

and Fc∗ represent respectively the current and the desired

camera frames and Fci an intermediate frame that has the

same position of the center as Fc∗ but the orientation of

Fc. As it can be seen from Figure 2, the translational

velocity to be applied to the frame Fc to move it towards its

desired position is equal to the negative of the velocities that

move Fci towards Fc. Therefore, to control the translational

motion of the current camera position, it is more adequate

to use the interaction matrix corresponding to sc computed

for the position corresponding to Fci:[
vx

vy

]
=−λL+

sci
(sc − sci) (23)

In the case of the projection onto the sphere, it was shown

in [20] that two interaction matrices L2
in

and L1
in

related to an

invariant to the 3D rotation in and computed respectively for

two camera poses 1 and 2 separated by a rotational motion

are related by equation:

L2
in
= L1

in
1R2 (24)

where 1R2 is the rotation matrix. Similarly, it can be shown

for feature sci that if only a rotation is considered between

Fci and Fc∗, Lsci
can be obtained from Lsc∗ by:

Lsci
= Lsc

c∗Ri (25)

where c∗Ri is the 2-dimensional rotation matrix correspond-

ing to the rotation angle γ between Fc∗ and Fci. Further-

more, since ci j is an invariant to the rotation around the



Fig. 3. Egocentric polar coordinate system with respect to the observer

z-axis, we have then sci = sc∗. By combining this result and

(25) in (23), we obtain:
[

vx

vy

]
=− iRc∗λL+

sc∗(sc − sc∗) (26)

By combining (26) and (22), we finally obtain:
[

vx

vy

]
=− iR∗

[
vx∗
vy∗

]
(27)

On the other hand, since and the z-axis has the same

orientation in the current and the desired camera poses, we

choose ωz = −ωz∗. In the next section, we explain how to

approximate effectively iRc∗.

IV. SIMULATION RESULTS

As non-holonomic vehicle, a differential drive mobile

robot is considered. The coordinate system shown in Fig.

3 and the control law proposed in [16] are used to transform

the camera velocities into linear and steering velocities to

be applied to the mobile robot. More precisely, the steering

velocity is defined by:

ω =
vl

r

[
k2(δ −arctan(−k1 θ)+(1+

k1

1+(k1θ)2
)sin(δ )

]

(28)

where k1 and k2 are two positive constants, vl is the linear

velocity, r is the distance between the current position of the

robot and the target position, θ is the orientation of the target

T with respect to the line of sight defined between the current

and desired position of the robot (T ); δ is the orientation of

the vehicle heading with respect to the line of sight. To apply

control law (28), it is necessary to represent the parameters

vl , r, θ and δ as a function of the cartesian camera velocities

obtained by IBVS. Let vx(λ = 1), vy(λ = 1) and ωz(λ =
1) be the camera velocities obtained using the scalar gain

λ = 1 in (22). First, the linear velocity can be defined as

vl =
√

v2
x + v2

y . The linear velocity becomes null when the

translational motion is null (because of the invariance of the

feature sc). The angle δ can also be estimated as the direction

of the velocity to be applied to the current camera pose from

δ = atan2(vy,vx) (since the camera is rigidly attached to the

robot). The distance from the initial to the desired camera

pose can be approximated by r =
√

v2
x(λ = 1)+ v2

y(λ = 1)

after removing the time unit. This is equivalent to setting
vl
r
=

λ in (28). Finally, angle θ can be defined as the rotation angle

between the initial and desired camera pose. More precisely,

we choose θ = ωz(λ = 1)− δ . Note also that θ as defined

in Figure 3 is equal to γ as defined in Figure 2. The rotation

matrix iR∗ is also estimated using γ =ωz(λ = 1) as a rotation

angle.
In the first set of simulation results, we compare the

application of the IBVS described in this paper with the
application of the exact 3D parameters θ , r and δ in the
control law (28). More precisely, four examples of robot
parking are considered: all cases start from the same initial
pose and have to converge towards four different desired
poses obtained after shifting the initial pose by the trans-
lational motion defined by [4 4] meters but with different
orientations corresponding respectively to the angles 0, π

2
, π

and 3π
2

. The images of the following set of 8 points defined
in the 3D environment were used to computed the velocities
for IBVS:

Xo =




15.6 15.6 7.98 5.38 9 6.62 0 0
7.62 8.29 15.6 15.6 0 0 8.15 10.32
−0 0.86 2.52 0.32 2.07 2.14 1.30 1.79




(29)

In these simulations, the desired depths r∗ =
√

X∗2 +Y ∗2,

required to compute the interaction matrix, are assumed

to be known (they could, for example, be estimated using

the multiple-view scene reconstruction proposed in [2]).

The simulations have been performed using the ISFfMR

Integrated Simulation Framework for Mobile Robots [5]. The

constants k1 = 4 and k2 = 12 were used in the control law

(28) to control the robot using IBVS and the real 3D param-

eters. Figure 4 shows the trajectories performed by the robot

using IBVS and using the real 3D data. From this Figure, it

can be seen that the trajectories are similar and that IBVS

has a performance similar (and as satisfactory) as using the

3D real data. Video 1 (in attachment to this paper) shows the

behavior of the robot along the performed trajectories. The

video confirms the similarities between the two trajectories

and the good convergence towards the desired robot pose.

Only the velocities of the robot along these trajectories differ:

the convergence using IBVS is slightly slower than using the

3D real data for this experiment. This due to the fact that the

amplitude of the translation estimated using IBVS is smaller

than the real one.

In the second set of simulations, a wrong scale for the

position of the points is used (r̂∗ = 1.3r∗ is used as depth

instead of the real values). The same cases of robot parking

considered in the first set of simulations are considered here.

Figure 5 compares the trajectories performed by the robot

using the real value of εr∗ and r̂∗ to computed the desired

value of the interaction matrices. From these plots, it can

be seen that the errors on the scene scale have negligible

influence on the trajectories performed, which means that

the curvature defined by the ratio between the steering

velocity and the linear velocity ω
vl

is not very sensitive to

the scene scale. Videos 2 and 3 compare the behavior of

the robot motions along the performed trajectories and the

point motions in the image using the correct and an erroneous

scene scale. The two videos show that the robot converges in

all cases cases, but with different velocities: the convergence

using r̂∗ = 1.3r∗ to computed the interaction matrices is

faster than when using the real depth r∗. This is due to the

fact that the scene scale used is bigger than the real one,
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Fig. 4. Trajectory performed by the robot using the real 3D parameters
and the 3D parameters estimated from an IBVS in the case of four different
rotation angles: a) 0degrees, b) 90degrees, c) 180degrees, d) 270degrees
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Fig. 5. Trajectory performed by the robot using the real 3D parameters
and the 3D parameters estimated from an IBVS in the case of four different
rotation angles: a) 0degrees, b) 90degrees, c) 180degrees, d) 270degrees

and therefore the amplitude of the translational motions to

be performed are amplified.

V. CONCLUSION

In this paper, an IBVS using a radial camera model

has been derived and proposed. This model allows the use

of IBVS with non-central catadioptric systems (with axial

symmetry). In addition new visual features derived from this

projection model were also proposed. Furthermore, the IBVS

proposed only uses the desired value of the interaction matrix

to compute the velocities, which allows to avoid estimating

depth during servoing as well as to avoid inverting the

interaction matrix. Several simulation results are provided

to show the effectiveness of our approach. Future works will

include to extend the application of the radial camera model

to control a 6 DOFs robot.
REFERENCES

[1] A. Agrawal, Y. Taguchi, and S. Ramalingam. Analytical forward
projection for axial non-central dioptric and catadioptric cameras.
In K. Daniilidis, P. Maragos, and N. Paragios, editors, ECCV 2010,
volume 6313/2010 of Lecture Notes in Computer Science, pages 129–
143, 2010.

[2] A. Agrawal, Y. Taguchi, and S. Ramalingam. Beyond alhazen’s
problem: Analytical projection model for non-central catadioptric
cameras with quadric mirrors. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2993–3000, 2011.
[3] S. Baker and S. Nayar. A theory of catadioptric image formation. Int.

Journal of Computer Vision, 35(2):175–196, November 1999.
[4] S. Benhimane and E. Malis. Vision-based control with respect to

planar and non-planar objects using a zooming camera. In The 11th

International Conference on Advanced Robotics Coimbra, Portugal,
pages 863–866, Coimbra, Portugal, June 30 - July 3 2003.

[5] J. C. G. Cadavid. Isffmr integrated simulation framework for mobile
robots. https://sites.google.com/site/isffmr/.

[6] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino. Keeping
features in the field of view in eye-in-hand visual servoing: a switching
approach. IEEE Transactions on Robotics, 20(5):908–914, Oct. 2004.

[7] P. Corke, D. Strelow, and S. Singh. Omnidirectional visual odometry
for a planetary rover. In In IEEE/RSJ International Conference on

Intelligent Robots and Systems, volume 4, pages 4007–4012, Sendai,
Japan, 28 Sept.–2 Oct. 2004.

[8] J. Courbon, Y. Mezouar, L. Eck, and M. Martinet. A generic fisheye
camera model for robotic applications. In IROS, pages 1683–1688,
2007.

[9] C. Geyer and K. Daniilidis. Mirrors in motion: Epipolar geometry and
motion estimation. Int. Journal on Computer Vision, 45(3):766–773,
2003.

[10] H. Hadj-Abdelkader, Y. Mezouar, P. Martinet, and F. Chaumette.
Catadioptric visual servoing from 3d straight lines. IEEE Trans. on

Robotics, 24(3):652–665, June 2008.
[11] E. Malis. Improving vision-based control using efficient second-

order minimization techniques. In IEEE Int. Conf. on Robotics and

Automation, volume 2, pages 1843– 1848, New Orleans, Louisiana,
April 2004.

[12] M. Marey and F. Chaumette. Analysis of classical and new visual
servoing control laws. In IEEE Int. Conf. on Robotics and Automation,

ICRA’08, pages 3244–3249, Pasadena, California, May 2008.
[13] G. L. Mariottini and D. Prattichizzo. Image-based visual servoing

with central catadioptric camera. International Journal of Robotics

Research, 27:41–57, 2008.
[14] C. Mei and P. Rives. Single view point omnidirectional camera

calibration from planar grids. In IEEE Int. Conf. on Robotics and

Automation, pages 3945–3950, April 2007.
[15] Y. Mezouar and F. Chaumette. Path planning for robust image-based

control. IEEE Trans. on Robotics and Automation, 18(4):534–549,
August 2002.

[16] J. J. Park and B. Kuipers. A smooth control law for graceful motion of
differential wheeled mobile robots in 2d environment. In 2011 IEEE

International Conference on Robotics and Automation (ICRA), pages
4896–4901, Shanghai, China, May 9-13 2011.

[17] C. Sagues, A. Murillo, J. Guerrero, T. Goedeme, T. Tuytelaars, and
L. Van Gool. Localization with omnidirectional images using the radial
trifocal tensor. In IEEE Int. Conf. on Robotics and Automation, pages
551 – 556, Orlando, FL, 15-19 May 2006.

[18] T. Svoboda and T. Pajdla. Epipolar geometry for central catadioptric
cameras. Int. Journal on Computer Vision, 49(1):23–37, August 2002.

[19] O. Tahri and Y. Mezouar. On visual servoing based on efficient second
order minimization. Robotics and Autonomous Systems, 58(5):712–
719, May 2010.

[20] O. Tahri, Y. Mezouar, F. Chaumette, and P. Corke. Decoupled image-
based visual servoing for cameras obeying the unified projection
model. IEEE Trans. on Robotics, 26(4):684 – 697, August 2010.

[21] S. Thirthala and M. Pollefeys. Multi-view geometry of 1d radial
cameras and its application to omnidirectional camera calibration. In
Tenth IEEE International Conference on Computer Vision, volume 2,
pages 1539–1546, Beijing, China, 17-21 Oct. 2005.

[22] S. Thirthala and M. Pollefeys. The radial trifocal tensor: a tool for
calibrating the radial distortion of wide-angle cameras. In IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition,
pages 321 – 328, San Diego, CA, USA, 20-25 June 2005.


