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Abstract

It has been shown, in previous work, that the 3D po-
sition of a line can be reconstructed from a single image
in vision systems that do not possess a single viewpoint.
We present a new method that, in a non-central axial ca-
tadioptric system, can achieve line spacial reconstruc-
tion from 3 or more image points, given the distance
ratio of 3 points in the line (a fair assumption in, for
example, structured environment with repetitive archi-
tectural features). We use cross-ratio as an invariant to
constrain the line localization and perform the recons-
truction from a set of image points through non-linear
optimization. Experimental results are presented.

1. Introduction

Catadioptric vision systems use a combination of
cameras and mirrors to acquire images. A particular
class of systems, central catadioptric cameras, allow for
a single-viewpoint projection model [1]. In general,
however, a catadioptric camera is non-central [10], and
the viewing rays do not intersect at a single point.

The multi-viewpoint characteristic of non-central ca-
meras has been explored to achieve spacial localization
of lines from a single image [3–6, 8]. In non-central
systems, the viewing rays corresponding to a line in the
image form a non-planar surface that, in a general case,
allows only for a finite number of possible space lines
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transversal to the viewing rays.

In [3], Caglioti and Gasparini discussed constraints
on system geometry and line positioning that enable the
line to be univocally located. They also presented an
algorithm to reconstruct a line from 4 image points, as-
suming an axial-symmetrical system. In a closely re-
lated paper [8], Lanman et al. shown how to recons-
tructed a line spacial position using Singular-Value-
Decomposition of a matrix of Plücker coordinates of 4
viewing rays. The constraint of placing the camera on
the mirror axis was relaxed in [4], and the conditions
under which lines can be reconstructed were analyzed
in this more general system geometry. In [5], Caglioti
et al. proposed two new methods for line localization.
One method first tried to identify two planar viewing
rays (whose existence is not guaranteed for a line in ge-
neral position), and then use two more rays to provide
a simple geometric solution for the reconstruction. The
other method relied on a constrained non-linear opti-
mization whose error function was based on a bilinear
operator of Pl̈ucker vectors. In [6], the image of a space
line was used to provide constraints to the calibration of
an off-axis catadioptric camera.

In this paper we propose a new algorithm to re-
construct the spacial localization of lines from a single
image, acquired from a non-central axial catadioptric
system. The system is composed of a rotationally sym-
metric mirror and a pinhole camera with its optical cen-
ter placed on the mirror axis. We assume that the system
is calibrated, so that each image point corresponds to a
known viewing ray in space. Our algorithm uses the
images of 3 points on a space line (the previously cited
methods use 4 points), and requires the knowledge of
the ratio of distances between those 3 points. In structu-
red environments, the distance ratio can be determined,
for example, from repetitive features in the floor, walls
or ceiling, like windows, light fixtures, tiles, etc.
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Figure 1. The axial catadioptric geometry.

By using the cross-ratio as an invariant in our image
formation geometry, we show how to obtain a constraint
on the line spacial direction, and determine its localiza-
tion through non-linear optimization of a single variable
function. All the points on the image contour of the line
can be integrated in the non-linear optimization to re-
duce the effect of noise.

2. Cross-ratio as an invariant in the axial ca-
tadioptric geometry

In this section we discuss the system geometry and
show that the cross-ratio can be used as an invariant
between scene and image points. This property was first
noted by Wu and Hu in [11], that used it in the calibra-
tion of central catadioptric systems. We show how it
can be applied to our model and used to constrain the
direction of the space line.

As previously mentioned, we consider an non-
central axial catadioptric system. Additionally, we as-
sume that the camera is aligned with the mirror, i.e.,
the camera’s principal axis coincides with the symme-
try axis of the mirror. A pre-rotation can be performed
to align the camera frame with the mirror axis by ap-
plying a homographic point transformation to the image
(called aconjugate rotation[7]).

Consider Fig. 1. LetC be the camera’s optical center
ando the principal point of the image (image center).
Let A, B, C andD be four 3D points belonging to a
space line. Pointa is the reflected image ofA. Point
SA is the reflection point on the surface of the mirror.
From the laws of reflection, we know that the incident
ray, the reflected ray and the mirror surface normal at
point SA must belong to the same plane. We refer to
this plane as theprojection planeof pointA. Note that,
given the mirror’s rotational symmetry, everyprojection
planemust contain the mirror axis.

Since the camera principal axis (z-axis) is aligned
with the mirror axis, the orthographic projection of
point A in the image plane, denoted byA′, is also on
the sameprojection plane. Thus, in the image, the prin-
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Figure 2. The cross-ratio in the image.

cipal pointo, the orthographic projectionA′, and the
reflected imagea are collinear. Fig. 2(a) shows this re-
lation for images of the four image points. It is evident
that the cross-ratio of the four pointsA′, B′, C′ and
D′ is equal to the cross-ratio between the four concur-
rent lines passing througha, b, c, d and the vertexo
(c.f. [9]). Furthermore, since the cross-ratio is invariant
under an orthographic projection we can write ({·} de-
notes cross-ratio)

{o;abcd} = {A′B′C′D′} = {ABCD} . (1)

3. Reconstructing a space line

In this section we present our reconstruction method.

Constraint on the line direction

Consider Fig. 2(b), whereL′ is the orthographic pro-
jection of the space line andl′ is the image line joining
pointso andd. If point D is considered to be at infi-
nity, D → ∞, thenl′ becomes parallel toL′, and its
direction can be obtained from equation 1, given the
knowledge of the distance ratio between three (finite)
points of the space line,A, B andC.

Let n =
[
nx ny 0

]T
be a 3D vector that belongs

to the image plane and is orthogonal to linel′, poin-
ting in the direction of the orthographic projection of
the space line (w.r.t. the image centero). Also, consider
this vector to be normalized to unit length,‖ n ‖= 1.

Vectorn can be seen as the normal vector to a family
of planes that are perpendicular to the image plane and
are parallel to the space lineL. This family of planes

can be parameterized byΠ(α) ∼ [
nx ny 0 −α

]T
,

whereα > 0 is a scalar. Note that a 3D pointX belongs
to planeΠ(α) iff

[
XT 1

]
Π(α) = 0.

3D reconstruction

The spacial line must belong to the surface of the vi-
ewing rays back-projected from the line image, and, at
the same time, to a plane in the family of planesΠ(α).
Assuming general position, the curved surface of the vi-
ewing rays contains two lines transversal to the viewing



rays [3]. One solution is the mirror axis, as all rays pass
through it, and corresponds to planeΠ(α = 0). The
other solution corresponds to the spacial line itself. The
problem is, thus, reduced to finding the value ofα > 0
that produces a line as the result of intersecting plane
Π(α) with the surface of the viewing rays.

Consider N viewing rays obtained from back-
projecting image points on the line. Each ray is defined
by the reflection point on the surface of the mirrorSi

and by a direction vectorRi. The subscripti denotes
the i-th ray. The intersection point between a viewing
ray and planeΠ(α) is given by

Xi(α) = Si +
(

α− nTSi

nTRi

)
Ri . (2)

Now, consider a matrixQ that is constructed by stacking
the set ofN intersection points in the following manner:

Q(α) =




X1(α)T 1
· · ·

XN (α)T 1




The right null space ofQ defines a plane containing
all the intersection pointsXi(α), i = 1, .., N . This null
space always exists because the points belong to plane
Π(α). However, if all the points are collinear,Q will
have a 2-dimensional null space that spans a pencil of
planes (with the line as the axis of the pencil) [7].

Assuming the presence of noise, the spacial line lo-
calization can be estimated from the following proce-
dure: Consider functionf(·) that returns the second
smallest singular value resulting from a Single-Value-
Decomposition (SVD) of a matrix. The value ofα that
produces the “best” set of intersection pointsXi(α),
i = 1, .., N , can be obtained by applying non-linear
optimization methods (e.g. Levenberg-Marquardt) to

min
α

f
(
Q(α)

)
. (3)

The space lineL is obtained by fitting the set of in-
tersection points.

Using concurrency and perpendicularity to improve
the reconstruction

In some situations, additional information regarding the
scene may be available, which can be used to improve
the reconstruction accuracy and immunity to noise. We
outline the procedure that can be used when two distinct
lines have a common intersection point visible in the
image and are known to be perpendicular.

Let Xi(α), i = 1, .., N be the set of viewing rays of
one line, andYi(β), i = 1, .., M the set of the other
line. Each set is parameterized by a different scalar,α

andβ, because each line is associated to different fa-
mily of planes that constrain its direction in space. Let
C denote the viewing ray corresponding to the concur-
rency point identified in the image. SinceC belongs to
both lines, we have thatC(α) = C(β) and, substitu-
ting in equation 2, it is straightforward to obtainβ as
a function ofα, so that, once again, the reconstruction
problem reduces to optimizing a function in a single va-
riable. In this case, the objective functionf (equation 3)
should return a measure of orthogonality, e.g. the inner
product between the direction vectors of both lines.

4. Experimental Results

We now present some experimental results to vali-
date our reconstruction algorithm.

Fig. 3(a) shows the image obtained using a spheri-
cal mirror (30cm radius) that is reflecting planar chec-
kered patterns. Points belonging to two distinct lines
were identified in the image: 8 points in line 1 (green
‘•’), and 7 points in line 2 (blue ‘¦’). In each line, three
points in the set were selected and used to calculate the
distance ratio (marked with ‘+’).

We calibrated the system using the following proce-
dure: First, the camera’s internal parameters were es-
timated using standard methods [2]. An auxiliary grid
pattern (visible on the upper left corner of Fig. 3(a)),
with a known pose w.r.t. the mirror, was used to ob-
tain the camera/mirror transformation directly from the
image (again using [2]). Finally, the transformation
between the mirror and the remaining checkered pat-
terns was recovered from another perspective image,
external to the scene.

Table 1 summarizes the reconstruction results for
each line using all the marked points and using only the
3 points with known distance ratio (minimum number
of points in our method). The results obtained by ap-
plying the 4 points method in [3] to our setup are provi-
ded for comparison. Also shown is the result of recons-
tructing both lines simultaneously using the knowledge
that they are concurrent and perpendicular in space. The
results are quantified by a distance errorderr, obtained
from the average distance between the end points of the
real and reconstructed line segments, and an angle error
γerr, the angle between the real and reconstructed li-
nes. Also shown is the percentage distance error, which
is the ratio betweenderr and the average of the distan-
ces between the end points of the real line and the center
of the camera.

In comparison to the method in [3], our algorithm
produced better results. The simultaneous reconstruc-
tion of both lines performed better than each of the in-
dividual results, a natural consequence of using more
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Figure 3. Test images and reconstruction results. Fig.(a), (b) and (c), from left to right.

4 points 3 points all points
(method in [3]) (our method) (our method)

line 1 346 39.6% 23.7◦ 31 3.6% 1.2◦ 53 6.0% 1.0◦

line 2 259 29.8% 24.3◦ 190 21.8% 2.4◦ 106 12.2% 2.0◦

both – – – – – – 43 5.3% 1.2◦

Table 1. Experimental results. Each cell
shows: derr[mm]; derr[%]; γerr[◦]

information about the scene. As observed in [8], the re-
construction accuracy is very sensitive to noise in the
system’s calibration and in image point identification.

Fig. 3(b) shows a test image of an outdoors scene
with the facade of a building (the image is slightly crop-
ped to provide the reader more detail of the reflected
image). Points belonging to 4 lines were marked using
visible features of the windows and wall (line 1: green
‘•’; line 2: cyan ‘×’; line 3: red ‘∗’; line 4: blue ‘¦’;).
First, each line was reconstructed individually. Unlike
the previous experiment, the ground truth spacial posi-
tion of the lines (w.r.t. the camera frame) was not avai-
lable, so we compared the length of the reconstructed
and real line segments. The line segments were recons-
tructed within30% to 50% of the real length. Next, we
paired line 1 with line 3, and line 2 with line 4, and
reconstructed each pair using the fact that the lines are
concurrent and perpendicular. This time, the length of
each line was recovered to within10% of the real va-
lue (worst case). Furthermore, and although each pair
was reconstructed independently, all the recovered lines
were approximately coplanar. Fig. 3(c) shows the re-
constructed line points projected to the recovered “wall”
plane (obtained from a least-squares fitting), overlaid
on the ground truth line segments (black lines). The
distances between the reconstructed 3D points and the
estimated plane had an RMS value of 75mm.

The outdoors scene proved more challenging and
produced poor results on the recovery of individual li-
nes, although the reconstruction of lines pairs perfor-
med very well.

5. Conclusions

We presented a new method for spacial reconstruc-
tion of lines from a single image of a non-central axial
catadioptric systems. We use knowledge about the
scene structure, namely the distance ratio of 3 points, to
constrain the line 3D position and facilitate the recons-
truction. Our experimental results show that, although
the reconstruction can be very sensitive to noise, good
results can be achieved even with outdoors scenes.
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