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Abstract

This paper presents novel contributions on image-based control of a mobile robot
using a general catadioptric camera model. A catadioptric camera is usually made
up by a combination of a conventional camera and a curved mirror resulting on
an omnidirectional sensor capable of providing 360o panoramic views of a scene.
Modeling such cameras has been subject of significant research interest in the
computer vision community leading to a deeper understanding of the image prop-
erties and also to different models for different types of configurations. Visual
servoing applications using catadioptric cameras have essentially been using cen-
tral cameras and the corresponding unified projection model. So far only in a few
cases more general models have been used. In this paper we address the problem
of visual servoing using the so-called the radial model. The radial model can be
applied to many camera configurations and in particular to non-central catadiop-
tric systems with mirrors that are symmetric around an axis coinciding with the
optical axis. In this case, we show that the radial model can be used with a non-
central catadioptric camera to allow effective image-based visual servoing (IBVS)
of a mobile robot. Using this model, which is valid for a large set of catadioptric
cameras (central or non-central), new visual features are proposed to control the
degrees of freedom of a mobile robot moving on a plane. A set of experiments was
carried out on Robot Operating System (ROS)-based platform which validates the
applicability and effectiveness of the proposed method for imaged-based control
of a non-holonomic robot.
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1. Introduction

Vision-based servoing approaches are versatile and effective methods to con-
trol robot motion by using camera observations. In practice, when a conventional
camera is used there is no guarantee that the features remain in the camera’s field
of view (FOV). In order to overcome the problem of keeping the features in the
camera’s FOV, several methods have been developed namely: based on path plan-
ning [1], zoom adjustment [2], switching control [3]. Simpler and differing ap-
proaches consist on using omnidirectional vision sensors to increase the FOV us-
ing mirrors. Wide-angle cameras include catadioptric systems that combine mir-
rors and conventional cameras to create omnidirectional images providing 360o

panoramic views of a scene, or dioptric fish-eye lenses [4, 5]. Lately they have
been subject of an increasing interest from robotics researchers [6], [7], [8], [9],
[10].

Having a single viewpoint in omnidirectional imaging systems is very practi-
cal [4], [11]. Such systems have a single center of projection, in such way that
every image point measures the irradiance of the light passing through the same
viewpoint. One can model a central imaging system as two consecutive projec-
tions: spherical and perspective. Geyer and Daniilidis in [12] derived the geomet-
ric model of these systems, and called it the unified model. In this model perspec-
tive projection corresponds to a special configuration. This formulation has been
used by many research works in the area of visual servoing. Tahri et al. in [9] pro-
posed an image-based visual servoing(IBVS) method to control the translational
degrees of freedom (DOFs) which is invariant to rotational motion. In [7] an IBVS
is proposed. This method is based on the auto-epipolar condition, which occurs
when the current and desired catadioptric views undergo a pure translation. The
method has been applied to control a holonomic mobile robot. Adaptation of the
classical image-based visual servoing to a generalised imaging model was pro-
posed in [13], by modeling the cameras as sets of 3D viewing rays. In [6], the
projection of 3-D straight lines in the image plane on a central catadioptric sys-
tem is used to control a 6DOFs holonomic robot and a non-holonomic mobile
robot. As mentioned in [4], although the existing methods are effective for single-
viewpoint catadioptric systems, in practice just a few realistic configurations lead
to a single-viewpoint catadioptric system.

The problem of modeling the general case of a non-central catadioptric cam-
era is a hard problem and still has only been tackled partially in computer vision.
For this reason, iterative approaches are usually applied by some researchers to
determine the reflection point on the mirror. Recently, a forward projection model
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has been proposed for the case of non-central catadioptric cameras consisting on a
perspective camera and a rotationally symmetric conic reflector [14]. In the latter
work, the optical path from a given 3D point to the given viewpoint is obtained by
solving a 6th degree polynomial equation for general conic mirrors. For a spher-
ical mirror, the forward projection equation reduces to a 4th degree polynomial,
resulting in a closed form solution. In [15], an analytical forward projection equa-
tion for the projection of a 3D point reflected by a quadric mirror into the image
plane of a perspective camera, with no restrictions on the camera placement is
derived. They show that the equation is a 8th degree polynomial in a single un-
known. In absence of an analytical and simple forward model, the determination
of some elements like the interaction matrix required for image-based servoing
becomes difficult.

For scene reconstruction or control purposes, a complete knowledge of the
projection model is not always required. In [16], a technique to linearly estimate
the radial distortion of a wide-angle lens given three views of a real-world plane
has been proposed using the radial projection model. Based on [16], linear meth-
ods for the estimation of multi-view geometry of 1D radial cameras have been
studied in [10] and [17].

In this paper, it will be shown that the simple radial projection model can be
sufficient for mobile robot control using a large family of catadioptric cameras.
More precisely, the contributions of this paper are:

• An image-based visual servoing method for mobile robots moving on a
plane, valid for a large set of catadioptric cameras (including radially sym-
metric non-central cameras) is proposed.

• Using the radial model, new visual features with decoupling properties are
derived.

• An efficient image-based visual servoing approach based on the desired
value of the interaction matrix is proposed.

• The feasibility and effectiveness of the proposed method have been demon-
strated with real experiments using a real robot.

The rest of this paper is organized as follows:

• The proposed radial camera model and its usage for visual servoing are
introduced in Section 3.
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• The issues related to the selection of adequate visual features from images
are discussed in Section 4. A control law which uses the proposed features
is introduced in the same section.

• In Section 5 we present our experimental setup and achieved results using
ROS platform and real robot.

• Conclusions and future works are presented and discussed in Section 6.

2. Notation and symbols

Throughout this article we use the following notations:

• Scalars are typeset in regular lower-case.

• Vectors are denoted by lower-case boldface.

• Matrices are typeset in capital boldface.

• Variables with the * (star) as exponent denote they are computed using the
information corresponding to the robot’s goal positions.

3. Radial camera model for visual servoing

3.1. Radial camera model
A catadioptric system made up by the combination of a conventional pinhole

camera and a rotationally symmetric mirror, shown in Figure 1, is considered.
The camera is positioned in such a way as to have its optical axis aligned with the
mirror axis. Using the radial projection model, 3D point p = (X , Y, Z) is reflected
first on a point on the mirror pr = [Xr Yr, Zr] before being projected onto the image
plane as x̃m (expressed in metric homogeneous coordinates):

x̃m = (xm, ym, 1) =
pr
Zr

(1)

Point x̃m is projected into the catadioptric image at x̃d = (xd, yd, 1), expressed in
pixels and can be obtained from x̃m using:

x̃d = Kx̃m (2)
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where K is the matrix of the camera intrinsic parameters, fx and fy being the
focal lengths, µx and µy are the principle point coordinates (and zero skew) as
following:

K =

 fx 0 µx
0 fy µy
0 0 1

 (3)

From the laws of reflection, we have: (a) vector n, the center of the projection
c, the 3D points p and pr belonging to the same plane π as shown in Fig. 1, (b) the
angle between the incident ray and n is equal to the angle between the reflected
ray and n. In [17] and [10], the intersection of the planes π defined by the image
points from multiple views has been used to recover linearly the structure of the
scene.

The mirror is rotationally symmetric, and therefore the optical axis also be-
longs to π . Further, for symmetry reasons, the center of distortion (in our case
the center of the image) (crad) and the principal point coincide. In this paper, the
normalized coordinates of xm are used as follows:

xn =
xm
‖ xm ‖

(4)

so that they belong to the unit circle. Later, xn will be used in the derivation of the
new features and image servoing algorithm.

Note that the computation of xn from the image points expressed in pixel only
requires the knowledge of the principal point coordinates (which coincides with
the distortion center) and the ratio of the focal length parameters. One can prove
it as following: from (4): 

xn =
xm√

x2
m + y2

m

yn =
ym√

x2
m + y2

m

(5)

In the other hand, using (2), xm and ym can be expressed as following:
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
xm =

xd−µx

fx

ym =
yd−µy

fy

(6)

In (5) xm and xy can be substituted by their expressions from (6) yielding:

xn =
xd−µx√

(xd−µx)2 +ρ2
f (yd−µy)2

yn =
yd−µy√

ρ
−2
f (xd−µx)2 +(yd−µy)2

(7)

where

ρ f =
fx

fy
(8)

Equation (7) implies that further than the coordinates of the distortion’s center,
only the ratio between the two focal lengths needs to be known in order to obtain
xn. Note that the center of the image (center of distortion) can be approximated
by estimating the center of the mirror border (assumed to be a circle or an ellipse)
[18].

Let x̃u = (xu, yu, 1) = p
Z be the point coordinates (homogeneous) in metric

units of the projection of p using pinhole model as shown in Fig. 1. Let xu =
[xu,yu] be the non-homogeneous coordinates corresponding to x̃u. Since the center
of the pin-hole camera and p belong to plane π , the point xu also belongs to the
intersection of this plane with the image plane. Therefore, crad, xu and xm belong
to the same line. We have then xn = xu

‖xu‖ , which leads to:

xn =

[
xn
yn

]
=

1√
X2 +Y 2

[
X
Y

]
(9)

Note that xn is not defined only if the 3D point belongs to the camera optical axis
(which does not happen in the case of the catadioptric camera). In the following
xn will be used to define new visual features to control the motion of a mobile
robot moving on a plane.
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Figure 1: Axial catadioptric system

3.2. Visual servoing
In visual servoing the time variation ṡ of the visual features s can be linearly

expressed with respect to the relative camera-object kinematics screw:

ṡ = Lsτ, (10)

where Ls is the interaction matrix related to s. Usually, the control scheme is
designed to reach an exponential decoupled decrease of differences on the visual
features to their goal value s∗. If we consider an eye-in-hand system observing a
static object, the corresponding control law is:

τc =−λ L̂s
+
(s− s∗), (11)

where L̂s is a model or an approximation of Ls, L̂s
+

the pseudo-inverse of L̂s, λ a
positive gain tuning the time to convergence, and τc = (υc,ωc) the camera veloc-
ity sent to the low-level robot controller. In practice the matrix L̂s could be chosen
as the current value of the interaction matrix Ls. This choice (except in the case
of a singularity) ensures an exponential decrease of the error on features in image.
Unfortunately, further to the problem of local minima and singularities, comput-
ing the exact current value of the interaction matrix requires the knowledge of the
depth information. Determining this information can be time consuming, but also
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subject to instabilities. In order to avoid these problems, using the depth infor-
mation of the goal values in Ls can be an alternative (i.e Ls(Z∗) ). Unfortunately,
in that case, the exponential decrease of the features errors in the image will no
longer be ensured. Furthermore, if the value of L̂s changes, its pseudo-inverse
should also be computed at each iteration, which also can be time consuming if
the size of the features vector increases significantly.

In order to avoid computing the depth information and inverting L̂s at each
time that the velocities have to be computed, a straightforward choice is to use
the constant matrix Ls∗ computed for the goal pose. Using Ls∗ also permits to
avoid the problem of the singularities (except if the desired position corresponds
to a singular value of Ls∗). Despite the mentioned advantages above, in practice
using Ls∗ ensures a local and limited domain of convergence around the desired
position as compared to the case where Ls is used. Furthermore, the behavior of
the feature errors in the image as well as in 3D space is neither always predictable
nor always satisfactory. Combining Ls∗ and Ls in a single control law has been
studied in [19] and [20] to improve the stability and 3D behavior. Unfortunately,
once again, and as far as Ls is involved in the control law, the depth informa-
tion has to be determined and L̂s to be inverted. Actually, the limited domain of
convergence and the unpredictable behavior obtained using Ls∗ results, in large
part, from the problem of the tensor frame change. Indeed, Ls∗ expresses the
variations of features as a function of the camera velocities expressed in the goal
frame. Therefore, if the current and the goal frames have different orientations,
the tensor change of frame has to be taken into account since the velocities are
to be applied in the current camera frame. This problem has been highlighted in
[21] for instance. More precisely, instead of using the average L̂s =

Ls∗+Ls
2 , as

proposed in [19], [21] proposed to use L̂s =
Ls+Ls∗ T−1

2 after integrating the spatial
motion transform T. In this paper we only use the goal value of the interaction
matrix in the control law. More precisely, the velocity computed using L̂s = Ls∗ in
the control law (11) has to be multiplied by a spatial transformation T. A method
to effectively approximate the tensor change of frame in the case of a mobile robot
(to avoid reconstructing depth data and inverting L̂s at each iteration of the control
loop) will be described next.

4. Visual features selection and control law

In the next paragraph, new visual features are proposed and their correspond-
ing interaction matrices derived. A control law using the goal values of the inter-
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action matrices is also proposed and derived.

4.1. Visual features suitable to control camera translational velocities
In this paragraph, we introduce new visual features which are suitable for the

control of the translation component of the camera movement. To do so, we use
the inner product between the coordinates of two points xni and xn j in the image:

ci j = x>n i xn j (12)

By taking the derivative of (12), we obtain:

ċi j = x>nj ẋni +x>ni ẋnj (13)

The interaction matrix corresponding to xn can be obtained by taking the deriva-
tive of (9):

Lxn =
[

Lxnυ Lxnω

]
(14)

with:

Lxnυ =

[
− (1−x2

n)
d

xnyn
d 0

xnyn
d − (1−y2

n)
d 0

]
(15)

and

Lxnω =

[
−xnynzn −(1− x2

n)zn yn
(1− y2

n)zn xnynzn −xn

]
(16)

where d =
√

X2 +Y 2 and zn = Z/d. By combining (14) and (13), the interaction
matrix Lci j = [Lci jυ Lci jω ] corresponding to ci j can be then obtained by:

Lci jυ =
[
(−1

d j
+

ci j
di
)x>n i +(−1

di
+

ci j
d j
)x>n j 0

]
(17)

and
Lci jω =

[
yn jzi j + yniz ji −xn jzi j− xniz ji 0

]
(18)

where zi j = zni− ci jzn j and z ji = zn j− ci jzni. From (17) and (18), it can be seen
that ci j is invariant to the motion around the optical axis (which corresponds to
the normal of the plane of motion). We assume that the camera is mounted on the
mobile robot so that the translational motion takes place on the plane defined by
the vectors x and y of the camera frame. Therefore, only the first two entries of
the matrix Lci jυ are useful for the control of the translational motion with respect
to the x-axis and the y-axis. In the next paragraph, we explain how to select an
adequate feature to control the remaining DOF, namely the rotation around the
optical axis.
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4.2. Visual features suitable to control camera rotation
In this paragraph, we introduce visual features which are suitable for the con-

trol of the rotational component of robot motion. We consider α as a natural
feature in the image that can be obtained from points xn to control the rotation of
the robot on a plane as:

α = atan2(yn,xn) (19)

The time variation of α can then be obtained by:

α̇ =
xn ẏn− yn ẋn

x2
n + y2

n
= xn ẏn− yn ẋn (20)

By combining (20) and (14), the interaction matrix corresponding to α can be
obtained by:

Lα =
[ yn

d
−xn

d 0 xn zn yn zn −1
]

(21)

From (21), we can notice the direct link between α and the rotation around the z-
axis. For the sake of robustness, all projected points xn have to be used. A simple
way to do it is by stacking all the angles αi in a feature vector. A better choice
can be combining all the points in a single and unique feature to control the rota-
tion around the z-axis. A straightforward and simple way to use all the rotation
angles could be using their average αa = 1

N ∑
N
i=1 atan2(yni,xni). Such feature is

directly related to ωz. However, the arithmetic average of rotations does not cor-
respond to the real average of rotations, especially when the difference between
the rotations considered is large. For instance, for a rotation angle close to π , and
due to the effect of noise or due to translational motion, the computed rotation
angles can have opposite signs. Therefore, the rotation angle corresponding to
their arithmetic mean would have a value close to 0 instead of π or−π generating
some discontinuities in the estimation of αa. In this paper, we propose to define a
rotation angle αm for a virtual point whose coordinates are computed as a linear
combination of the projections of points on the circle. Let p1 be the point defined
by:

p1 =
N

∑
i=1

aixni (22)

From p1, we define a new point v1 belonging to the unit circle by:

v1 =
p1
‖ p1 ‖

(23)
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By taking the derivative of (23), the interaction matrix corresponding to v1 can be
obtained by:

Lv1 =
I2−v1 v>1
‖ p1 ‖

N

∑
i=1

aiLxni (24)

Let αm be the angle defined by:

αm = atan2(v1y,v1x) (25)

By taking the derivative of (25), it can be obtained:

α̇m = v1xv̇1y− v1yv̇1x (26)

By combining (26) with (24), Lαmωz = −1 is obtained. As a result one can con-
clude that αm varies linearly with respect to the velocity ωz.

The parameters ai have to be determined before defining point v1 on the unit
circle. More precisely, we have to define a virtual point p∗1 and next represent it
as a linear combination of the desired projected points on the circle x∗ni. For the
sake of simplicity, p∗1 is chosen to be unitary (‖ p∗1 ‖= 1 then v∗1 =

p∗1
‖p∗1‖

= p∗1). Let
p∗2 be also a unit vector perpendicular to p∗1. As a result p∗1 and p∗2 form a direct
orthogonal frame basis V∗ = [p∗1; p∗2]. It is possible to represent any given frame
basis V∗ as a linear combination of the coordinates of a set of points. For instance,
V∗ could be set as the desired frame of the camera. In any given frame basis V∗,
each projected point onto the circle can be expressed as:

x∗ni = b1iv∗n1 +b2iv∗n2 (27)

Let B be the 2×N matrix that defines the coordinates of all the projected points
on the new frame basis. We have:

X∗nt = V∗ B (28)

where X∗nt = [x∗n1 x∗n2 . . .x
∗
nN ], and B = V∗>X∗nt . From (28), V∗ can be represented

as a linear combination of X∗nt by:

V∗ = X∗nt B+ (29)

B+ is a N×2 matrix corresponding to the pseudo-inverse of B. Therefore, the ai
can be chosen as the first columns of B+.
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4.3. Control law
Let sc be the feature vector obtained by stacking the features ci j and s∗c their

goal values. Let Lsc be the interaction matrix obtained by stacking the two first
entries vx and vy of the interaction matrix corresponding to each feature ci j. Only
the two first entries are taken into account because we are only concerned with a
planar motion and ci j is invariant to the rotation around z-axis. Let us consider that
the goal is to move the desired camera position towards the initial one. Therefore,
the velocities that have to be applied to the goal position of the camera using its
corresponding interaction matrix are obtained from:

[
υ∗x
υ∗y

]
=−λL+

sc∗(s
∗
c− sc)

ω∗z = λ (α∗m−αm)−Lαmυx∗ υ∗x −Lαmυy∗ υ∗y

(30)

where Lαmυx∗ and Lαmυy∗ represent the variation of αm with respect to the veloc-
ities υx and υy respectively. Let us consider the three frames shown in Figure 2-b.
Let Fc and Fc∗ represent respectively the current and the goal camera frames and
Fci an intermediate frame that has the same position of the center as Fc∗ but the
orientation of Fc. As it can be seen from Figure 2-b, the translational velocity
to be applied to the frame Fc to move it towards its desired position is equal to
the negative of the velocities that move Fci towards Fc. Therefore, to control the
translational motion of the current camera position, it is more adequate to use the
interaction matrix corresponding to sc computed for the position corresponding to
Fci: [

υx
υy

]
=−λL+

sci
(sc− sci) (31)

In the case of the projection onto the sphere, it was shown in [9] that two
interaction matrices L2

in and L1
in related to an invariant to the 3D rotation in and

computed respectively for two camera poses 1 and 2 separated by a rotational
motion are related by equation:

L2
in = L1

in
1R2 (32)

where 1R2 is the rotation matrix. Similarly, it can be shown for feature sci that if
only a rotation is considered between Fci and Fc∗, Lsci can be obtained from Lsc∗
by:

Lsci = Lsc
c∗Ri (33)
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where c∗Ri is the 2-dimensional rotation matrix corresponding to the rotation an-
gle γ between Fc∗ and Fci. We continue to prove that ci j will be invariant to any
rotation around z axis. Based on (12), ci j is a function of xni and xn j:

ci j = g(xni,xn j) = x>n i xn j (34)

Now we apply an arbitrary rotation R to the inputs of the function g:

g(Rxni,Rxnj) = (Rxni)
>Rxnj = xni

>R>Rxnj = xni
> xnj (35)

Equation (35) shows that g(Rxni,Rxnj) is equal to g(xni,xn j) and as a result the
feature ci j is invariant to any rotation around z axis. Since ci j is invariant to a
z-axis rotation one obtains sci = sc∗. By combining this result and (33) in (31), we
obtain: [

υx
υy

]
=− iRc∗λL+

sc∗(sc− sc∗) (36)

By combining (36) and (30), we finally obtain:[
υx
υy

]
=− iR∗

[
υx∗
υy∗

]
(37)

On the other hand, since and the z-axis has the same orientation in the current and
the goal camera poses, we choose ωz =−ωz∗. In the next section, we explain how
to effectively approximate iRc∗.

5. Experiments

In this section we present experimental results that were carried out. In our
previous work [22], simulated results were presented for different scenarios. In
this paper we present real results obtained in a real scenario. A Pioneer 3-DX
[23] has been used as differential drive non-holonomic vehicle. The experiments
were performed using the open-source meta-operating system, ROS [24]. The
coordinate system related to this robot is shown in Fig. 2-a. The control law
proposed in [25] is used to transform the camera velocities into linear and steering
velocities to be applied to the mobile robot. More precisely, the steering velocity
is defined by:

ω =
υl

r

[
k2(δ −arctan(−k1 θ)+(1+

k1

1+(k1θ)2 )sin(δ )
]

(38)
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a b

Figure 2: (a) Egocentric polar coordinate system with respect to the observer (b) Camera frame
position.

where k1 and k2 are two positive constants, υl is the linear velocity, r is the distance
between the current position of the robot and the goal position, θ is the orienta-
tion of the goal T with respect to the line of sight defined between the current and
desired position of the robot (T ); δ is the orientation of the vehicle heading with
respect to the line of sight. To apply the control law (38), it is necessary to repre-
sent the parameters υl , r, θ and δ as a function of the cartesian camera velocities
obtained by IBVS. First, the linear velocity can be defined as υl =

√
υ2

x +υ2
y . The

linear velocity becomes null when the translational motion is null (because of the
invariance of the feature sc). The angle δ can also be estimated as the direction
of the velocity to be applied to the current camera pose from δ = atan2(υy,υx)
(since the camera is rigidly attached to the robot). The distance from the initial

to the desired camera pose can be approximated by r =
√

υ2
x +υ2

y
λ

after removing
the time unit. This is equivalent to setting υl

r = λ in (38). Finally, angle θ can be
defined as the rotation angle between the initial and goal camera pose. More pre-
cisely, we choose θ = ωz

λ
−δ . Note also that θ as defined in Figure 2-a is equal to

γ as defined in Figure 2-b. The rotation matrix iR∗ is also estimated using γ = ωz
λ

as a rotation angle.
Once the robot is placed on the goal position (Fig. 3-a) in the scene an image

is grabbed as the goal image (Fig. 3-c). As seen in the figures, some black circles
(here nine circles) were fixed on the walls and used as visual beacons. The centers
of these beacons are automatically extracted (using openCV library) and used as
our goal points for the goal image. As already mentioned, one of the advantages
of the method proposed in this paper is that the camera does not need to be fully
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c d

Figure 3: Images of the robot and of images acquired by the robot on its position. (a) and (c): the
robot in the goal position and the corresponding image acquired by the robot, respectively. (b) and
(d) the robot on an arbitrary initial position and its corresponding image, respectively.

calibrated. In our experiments, ρ f has been given the value 1 and the center of the
image/distortion was computed as the center of the mirror border image. It has
as coordinates µx = 643, µy = 535 (automatically obtained through applying the
Hough transform for circle detection defining the mirror border in the image).

The robot is placed on an arbitrary position, the initial position (Fig. 3-b).
Then the robot moves, so that it can reach the goal position with the goal ori-
entation. After the extraction of features from both goal and initial images, the
proposed control law is applied to the robot. In our experiments, k1 = 1, k2 = 1
are used as constant parameters in the control law (38). As expected the robot
performs a smooth trajectory, converges and stops nearly on the goal position.
Fig. 4-a depicts the errors (distances in pixels) between the goal image points and
their corresponding points in the current as a function of servoing iterations. As
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a b

Figure 4: Diagram of errors in terms of points and features during the convergence: Fig. (a)
shows the reduction of errors between the nine goal image points and their correspondences in the
current image. Using these nine image points, 36 features were defined. The errors between the
goal features and current features are plotted in (b).

it can be seen, convergence is quite smooth and with negligible errors. The same
behavior is shown in Fig. 4-b where the errors between the features (c∗i j− ci j) are
plotted. The velocities of the camera and robot are shown in Fig. 5-a and Fig. 5-b,
respectively. Fig. 6 presents the errors in the angle αm values during servoing. It
should be mentioned that one movie corresponding to one of these experiments
can be accessed at https://sites.google.com/site/otahri/.

6. Conclusion

In this paper, we have used the radial camera model to propose a novel IBVS.
New features were extracted based on this model and their corresponding inter-
action matrices were derived. The method does not require a fully calibrated
camera. The only calibration parameters that are require are the ratio of the two
focal lengths (ρ f =

fx
fy

) and the coordinates of the principal point (µx and µy). In
general, both these parameters can be estimated automatically by using the image
of the mirror border (circle or ellipse). Furthermore, only the goal value of the
interaction matrix is used to compute the velocities, which allows avoiding the
estimation of the depths of the points, as well as the inversion of the interaction
matrix, during servoing.

As a result of using a simple radial model, the proposed IBVS method can
be applied for a large class of catadioptric cameras, both central and non-central.
The proposed method has been implemented using a ROS-based robotic platform.
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Figure 5: Plots for the velocities during the iterations: (a) Depicts the camera linear velocity. (b)
shows the linear and angular components of the velocity of the robot during the convergence.

Figure 6: Error in the camera’s angle corresponding to αm in (25).

The results obtained show the validity and effectiveness of the proposed approach.
Our future work includes extending the method for a 6 DOFs robot and the use of
global visual features as well as multiple-view geometry in the control law.
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