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Abstract—Novel contributions on image-based control of a
mobile robot using a general catadioptric camera model are
presented in this paper. Visual servoing applications using cata-
dioptric cameras have essentially been using central cameras
and the corresponding unified projection model. So far only
in a few cases more general models have been used. In this
paper we address the problem of visual servoing using the so-
called the radial model. The radial model can be applied to
many camera configurations and in particular to non-central
catadioptric systems with mirrors that are symmetric around an
axis coinciding with the optical axis. In this case, we show that the
radial model can be used with a non-central catadioptric camera
to allow effective image-based visual servoing (IBVS) of a mobile
robot. Two sets of experiments are carried. In one of the sets,
IMU (Inertial Measurement Unit) is used to measure the relative
rotation of the robot and in the other set visual features are
solely used. The achieved results validate both the applicability
and effectiveness of the proposed method for imaged-based control
of a non-holonomic robot.

I. INTRODUCTION

Image-based servoing approaches are versatile and effective
methods to control robot motion by using camera observations.
In practice, when a conventional camera is used there is no
guarantee that the features remain in the camera’s field of
view (FOV). In order to overcome the problem of keeping the
features in the camera’s FOV, several methods have been de-
veloped namely: based on path planning [1], zoom adjustment
[2], switching control [3]. Simpler and differing approaches
consist on using omnidirectional vision sensors to increase the
FOV using mirrors. Wide-angle cameras include catadioptric
systems that combine mirrors and conventional cameras to
create omnidirectional images providing 360o panoramic views
of a scene, or dioptric fish-eye lenses [4], [5]. Lately they have
been subject of an increasing interest from robotics researchers
[6], [7], [8], [9].

Having a single viewpoint in omnidirectional imaging sys-
tems is very practical [4], [10]. Such systems have a single cen-
ter of projection, in such way that every image point measures
the irradiance of the light passing through the same viewpoint.
One can model a central imaging system as two consecutive
projections: spherical and perspective. Geyer and Daniilidis
in [11] derived the geometric model of these systems, and
called it the unified model. In this model perspective projection
corresponds to a special configuration. This formulation has
been used by many research works in the area of visual
servoing. Tahri et al. in [9] proposed an image-based visual
servoing(IBVS) method to control the translational degrees of

freedom (DOFs) which is invariant to rotational motion. In
[7] an IBVS is proposed. This method is based on the auto-
epipolar condition, which occurs when the current and desired
catadioptric views undergo a pure translation. The method has
been applied to control a holonomic mobile robot. Adaptation
of the classical image-based visual servoing to a generalised
imaging model was proposed in [12], by modeling the cameras
as sets of 3D viewing rays. In [6], the projection of 3-D
straight lines in the image plane on a central catadioptric
system is used to control a 6DOFs holonomic robot and a
non-holonomic mobile robot. As mentioned in [4], although the
existing methods are effective for single-viewpoint catadioptric
systems, in practice just a few realistic configurations lead to
a single-viewpoint catadioptric system.

The problem of modeling the general case of a non-
central catadioptric camera is a hard problem and still has
only been tackled partially in computer vision. For this reason,
iterative approaches are usually applied by some researchers
to determine the reflection point on the mirror. Recently, a
forward projection model has been proposed for the case of
non-central catadioptric cameras consisting on a perspective
camera and a rotationally symmetric conic reflector [13]. In
the latter work, the optical path from a given 3D point to
the given viewpoint is obtained by solving a 6th degree
polynomial equation for general conic mirrors. For a spherical
mirror, the forward projection equation reduces to a 4th degree
polynomial, resulting in a closed form solution. In [14], an
analytical forward projection equation for the projection of a
3D point reflected by a quadric mirror into the image plane
of a perspective camera, with no restrictions on the camera
placement is derived. They show that the equation is a 8th
degree polynomial in a single unknown. In absence of an
analytical and simple forward model, the determination of some
elements like the interaction matrix required for image-based
servoing becomes difficult.

For scene reconstruction or control purposes, a complete
knowledge of the projection model is not always required. In
[15], a technique to linearly estimate the radial distortion of
a wide-angle lens given three views of a real-world plane has
been proposed using the radial projection model. Based on [15],
linear methods for the estimation of multi-view geometry of 1D
radial cameras have been studied in [16] and [17].

In this paper, it will be shown that the simple radial
projection model can be sufficient for mobile robot control
using a large family of catadioptric cameras. More precisely,
the contributions of this paper are:



• An image-based visual servoing method for mobile
robots moving on a plane, valid for a large set of cata-
dioptric cameras (including radially symmetric non-
central cameras) is proposed;

• Using the radial model, new visual features with de-
coupling properties are derived;

• An efficient image-based visual servoing approach
based on the desired value of the interaction matrix
is proposed.

• The feasibility and effectiveness of the proposed
method have been demonstrated with real experiments
using a real robot.

The rest of this paper is organized as follows: The proposed
radial camera model and its usage for visual servoing are
introduced in Section III. The issues related to the selection
of adequate visual features from images are discussed in
Section IV. A control law which uses the proposed features
is introduced in the same section. In Section V we present
our experimental setup and achieved results in a real scenario.
Conclusions and future works are presented and discussed in
Section VI.

II. NOTATION AND SYMBOLS

Throughout this article we use the following notations:
Scalars are typeset in regular lower-case. Vectors are denoted
by lower-case boldface. Matrices are typeset in capital boldface.
Variables with the * (star) denote they are computed using the
information corresponding to the robot’s goal positions.

III. RADIAL CAMERA MODEL FOR VISUAL SERVOING

A. Radial camera model

A catadioptric system made up by the combination of
a conventional pinhole camera and a rotationally symmetric
mirror, shown in Figure 1, is considered. The camera is
positioned in such a way as to have its optical axis aligned
with the mirror axis. Using the radial projection model, 3D
point p = (X , Y, Z) is reflected first on a point on the mirror
pr = [Xr Yr, Zr] before being projected onto the image plane as
x̃m (expressed in metric homogeneous coordinates):

x̃m = (xm, ym, 1) =
pr

Zr
(1)

Point x̃m is projected into the catadioptric image at x̃d =
(xd , yd , 1), expressed in pixels and can be obtained from x̃m
using:

x̃d = Kx̃m (2)

where K is the matrix of the camera intrinsic parameters, fx
and fy being the focal lengths, µx and µy are the principle point
coordinates (and zero skew) as following:

K =

[ fx 0 µx
0 fy µy
0 0 1

]
(3)

Fig. 1. Axial catadioptric system

From the laws of reflection, we have: (a) vector n, the center
of the projection c, the 3D points p and pr belong to the same
plane π as shown in Fig. 1, (b) the angle between the incident
ray and n is equal to the angle between the reflected ray and
n. In [17] and [16], the intersection of the planes π defined by
the image points from multiple views has been used to recover
linearly the structure of the scene.

The mirror is rotationally symmetric, and therefore the
optical axis also belongs to π . Further, for symmetry reasons,
the center of distortion (in our case the center of the image)
(crad) and the principal point coincide. In this paper, the
normalized coordinates of xm are used as follows:

xn =
xm

‖ xm ‖
(4)

so that they belong to the unit circle. Later, xn will be used
in the derivation of the new features and image servoing
algorithm. It can be proved that the computation of xn from the
image points expressed in pixel only requires the knowledge
of the principal point coordinates (which coincides with the
distortion center) and the ratio of the focal length parameters
(ρ = fx

fy
). Note that the center of the image (center of distortion)

can be approximated by estimating the center of the mirror
border (assumed to be a circle or an ellipse) [18].

Let x̃u = (xu, yu, 1) = p
Z be the point coordinates (homoge-

neous) in metric units of the projection of p using pinhole
model as shown in Fig. 1. Let xu = [xn,yn] be the non-
homogeneous coordinates corresponding to x̃u. Since the center
of the pin-hole camera and p belong to plane π , the point xu
also belongs to the intersection of this plane with the image
plane. Therefore, crad, xu and xm belong to the same line. We
have then xn = xu

‖xu‖ , which leads to:

xn =

[
xn
yn

]
=

1√
X2 +Y 2

[
X
Y

]
(5)

Note that xn is not defined only if the 3D point belongs to
the camera optical axis (which does not happen in the case of
the catadioptric camera). In the following xn will be used to
define new visual features to control the motion of a mobile
robot moving on a plane.



B. Visual servoing

In visual servoing the time variation ṡ of the visual features
s can be linearly expressed with respect to the relative camera-
object kinematics screw as ṡ = Lsτ , where Ls is the interaction
matrix related to s. Usually, the control scheme is designed
to reach an exponential decoupled decrease of differences on
the visual features to their goal value s∗. If we consider an
eye-in-hand system observing a static object, the corresponding
control law is:

τc =−λ L̂s
+
(s− s∗), (6)

where L̂s is a model or an approximation of Ls, L̂s
+

the
pseudo-inverse of L̂s, λ a positive gain tuning the time to
convergence, and τc = (υc,ωc) the camera velocity sent to the
low-level robot controller.

IV. VISUAL FEATURES SELECTION AND CONTROL LAW

In the next paragraph, new visual features are proposed
and their corresponding interaction matrices derived. A control
law using the goal values of the interaction matrices is also
proposed and derived.

A. Visual features suitable to control camera translational
velocities

In this paragraph, we introduce new visual features which
are suitable for the control of the translation component of the
camera movement. To do so, we use the inner product between
the coordinates of two points xni and xn j in the image:

ci j = x>n i xn j (7)

By taking the derivative of (7), we obtain:

ċi j = x>nj ẋni +x>ni ẋnj (8)

The interaction matrix corresponding to xn can be obtained by
taking the derivative of (5):

Lxn = [ Lxnυ Lxnω ] (9)

with:

Lxnυ =

[
− (1−x2

n)
d

xnyn
d 0

xnyn
d − (1−y2

n)
d 0

]
(10)

and
Lxnω =

[
−xnynzn −(1− x2

n)zn yn
(1− y2

n)zn xnynzn −xn

]
(11)

where d =
√

X2 +Y 2 and zn = Z/d. By combining (9) and (8),
the interaction matrix Lci j = [Lci jυ Lci jω ] corresponding to ci j
can be then obtained by:

Lci jυ =
[
(−1

d j
+

ci j
di
)x>n i +(−1

di
+

ci j
d j
)x>n j 0

]
(12)

and

Lci jω = [ yn jzi j + yniz ji −xn jzi j− xniz ji 0 ] (13)

where zi j = zni− ci jzn j and z ji = zn j − ci jzni. From (12) and
(13), it can be seen that ci j is invariant to the motion around the
optical axis (which corresponds to the normal of the plane of
motion). We assume that the camera is mounted on the mobile

robot so that the translational motion takes place on the plane
defined by the vectors x and y of the camera frame. Therefore,
only the first two entries of the matrix Lci jυ are useful for the
control of the translational motion with respect to the x-axis
and the y-axis. In the next paragraph, we explain how to select
an adequate feature to control the remaining DOF, namely the
rotation around the optical axis.

B. Controlling camera rotation

Previously we introduced some features suitable for control-
ling the robot’s transnational velocity. Beside this, the rotational
velocity has to be controlled as well. In this paragraph, we
introduce two approaches for this purpose. First one is to use
an IMU (Inertial Measurement Unit), as a digital compass,
to directly measure the relative rotational angle of the robot.
The second approach is to define and extract a set of features
which are sensitive to the camera’s rotation. This last method
was proposed in our previous work [19], nevertheless here we
briefly remind it. Let p1 be a point defined by:

p1 =
N

∑
i=1

aixni (14)

From p1, we define a new point v1 belonging to the unit circle
by:

v1 =
p1
‖ p1 ‖

(15)

By taking the derivative of (15), the interaction matrix corre-
sponding to v1 can be obtained by:

Lv1 =
I2−v1 v>1
‖ p1 ‖

N

∑
i=1

aiLxni (16)

Let αm be the angle defined by:

αm = atan2(v1y,v1x) (17)

By taking the derivative of (17), it can be obtained:

α̇m = v1xv̇1y− v1yv̇1x (18)

By combining (18) with (16), Lαmωz =−1 is obtained. As
a result one can conclude that αm varies linearly with respect
to the velocity ωz.

C. Control law

Let sc be the feature vector obtained by stacking the features
ci j and s∗c their goal values. Let Lsc be the interaction matrix
obtained by stacking the two first entries vx and vy of the
interaction matrix corresponding to each feature ci j. Only the
two first entries are taken into account because we are only
concerned with a planar motion and ci j is invariant to the
rotation around z-axis. We want to avoid computing the depths.
Let us consider that the goal is to move the desired camera
position towards the initial one. Therefore, the velocities that



have to be applied to the goal position of the camera using its
corresponding interaction matrix are obtained from:

[
υ∗x
υ∗y

]
=−λL+

sc∗(s
∗
c− sc)

ω∗z = λ (α∗m−αm)−Lαmυx∗ υ∗x −Lαmυy∗ υ∗y

(19)

where Lαmυx∗ and Lαmυy∗ represent the variation of αm with
respect to the velocities υx and υy respectively. Let us consider
the three frames shown in Figure 2-b. Let Fc and Fc∗ represent
respectively the current and the goal camera frames and Fci an
intermediate frame that has the same position of the center as
Fc∗ but the orientation of Fc. As it can be seen from Figure
2-b, the translational velocity to be applied to the frame Fc to
move it towards its desired position is equal to the negative of
the velocities that move Fci towards Fc. Therefore, to control
the translational motion of the current camera position, it is
more adequate to use the interaction matrix corresponding to
sc computed for the position corresponding to Fci:[

υx
υy

]
=−λL+

sci
(sc− sci) (20)

In the case of the projection onto the sphere, it was shown
in [9] that two interaction matrices L2

in and L1
in related to an

invariant to the 3D rotation in and computed respectively for
two camera poses 1 and 2 separated by a rotational motion are
related by equation:

L2
in = L1

in
1R2 (21)

where 1R2 is the rotation matrix. Similarly, it can be shown
for feature sci that if only a rotation is considered between Fci
and Fc∗, Lsci can be obtained from Lsc∗ by:

Lsci = Lsc
c∗Ri (22)

where c∗Ri is the 2-dimensional rotation matrix corresponding
to the rotation angle γ between Fc∗ and Fci. We continue to
prove that ci j will be invariant to any rotation around z axis.
Based on (7), ci j is a function of xni and xn j:

ci j = g(xni,xn j) = x>n i xn j (23)

Now we apply an arbitrary rotation R to the inputs of the
function g:

g(Rxni,Rxnj) = (Rxni)
>Rxnj = xni

>R>Rxnj = xni
> xnj

(24)

Equation (24) shows that g(Rxni,Rxnj) is equal to g(xni,xn j)
and as a result the feature ci j is invariant to any rotation around
z axis. Since ci j is invariant to a z-axis rotation one obtains
sci = sc∗. By combining this result and (22) in (20), we obtain:[

υx
υy

]
=− iRc∗λL+

sc∗(sc− sc∗) (25)

By combining (25) and (19), we finally obtain:[
υx
υy

]
=− iR∗

[
υx∗
υy∗

]
(26)

On the other hand, since and the z-axis has the same orientation
in the current and the goal camera poses, we choose ωz =−ωz∗.
In the next section, we explain how to effectively approximate
iRc∗.

a b

Fig. 2. (a) Egocentric polar coordinate system with respect to the observer
(b) Camera frame position.

V. EXPERIMENTS

In this section we present experimental results that were
carried out. In our previous work [19], simulated results were
presented for different scenarios. In this paper we present
real results obtained in a real scenario. A Pioneer 3-DX [20]
has been used as differential drive non-holonomic vehicle.
The experiments were performed using the open-source meta-
operating system, ROS [21]. The coordinate system related to
this robot is shown in Fig. 2-a. The applied control law in this
work is as follows:[

υl
ω

]
=

[
kr r

kδ δ + kθ θ

]
(27)

where r is the distance from the initial to the desired camera
pose which can be approximated by r =

√
υ2

x +υ2
y

λ
after removing

the time unit. The angle δ can also be estimated as the direction
of the velocity to be applied to the current camera pose from
δ = atan2(υy,υx) (since the camera is rigidly attached to
the robot). The angle θ is θ = ωz

λ
− δ . Note that in (27),

the following conditions have to be satisfied for the sake of
stability:

kr > 0 ,kθ < 0 (28)

and

kδ +
5
3

kθ −
2
π

kr > 0 (29)

Once the robot is placed on the goal position (Fig. 3-a) in
the scene an image is grabbed as the goal image (Fig. 3-c). As
seen in the figures, some black circles (here nine circles) were
fixed on the walls and used as visual beacons. The centers
of these beacons are automatically extracted (using openCV
library) and used as our goal points for the goal image. In
our experiments, ρ has been given the value 1 and the center
of the image/distortion was computed as the center of the
mirror border image. It has as coordinates µx = 636, µy = 536
. As already mentioned, one of the advantages of the method
proposed in this paper is that the camera does not need to be
fully calibrated.

The robot is placed on an arbitrary position, the initial
position (Fig. 3-b). Then the robot moves, so that it can
reach the goal position with the goal orientation. After the
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Fig. 3. Images of the robot and of images acquired by the robot on its position.
(a) and (c): the robot in the goal position and the corresponding image acquired
by the robot, respectively. (b) and (d) the robot on an arbitrary initial position
and its corresponding image, respectively.

extraction of features from both goal and initial images, the
proposed control law is applied to the robot. In our experiments,
kθ = −0.1, kr = λ = 0.15 and kδ = 0.31 are used as constant
parameters in the control law (27).

Two sets of experiments have been carried out depend on
how the camera rotational velocity is obtained. In one set, just
visual features are used for obtaining the rotational components
and for the other set IMU is solely used. For the first case
the rotation matrix iRc∗ (expressed in (26)) is estimated using
as a rotation angle (αm−α∗m) and for the second case it is
obtained as the difference between the angles measured by
the IMU. As expected the robot performs smooth trajectories,
converges and stops nearly on the goal position. Figures 4-a
and -b depict the errors (distances in pixels) between the goal
image points and their corresponding points in the current as a
function of servoing iterations (a: just visual features are used
for obtaining rotation, b: just IMU to measure rotation). As it
can be seen, convergences are quite smooth and with negligible
errors. The same behaviors are shown in Figures 4-c and -d,
where the errors between the features (c∗i j−ci j) are plotted (c:
rotation is estimated from vision, d: rotation is measured using
IMU). The velocities of the camera are shown in Figures 5-
a and -b. Figures 5-c and -d depict the robot’s velocities in
the two mentioned scenarios. Figure 6-a presents the errors
in the angle αm values during servoing. The convergence of
the camera’s current rotation to the camera’s goal rotation is
plotted Figure 6-b where the angles are measured by IMU. It
should be mentioned that two movies, each one corresponding
to one of the scenarios, have been filmed and can be accessed
at https://sites.google.com/site/otahri.

a b

c d

Fig. 4. Diagram of errors in terms of points and features during the
convergence: (a) and (b) show the reductions of errors between the nine goal
image points and their correspondences in the current images. Using these nine
image points, 36 features were defined. The errors between the goal features
and current features are plotted in (c) and (d). Images at the left correspond
for the case of using just visual features and images at the right for the case
of using IMU for rotational controlling)

VI. CONCLUSION

In this paper, we have used the radial camera model to
propose a novel IBVS. New features were extracted based on
this model and their corresponding interaction matrices were
derived. The method does not require a fully calibrated camera.
The only calibration parameters that are require are the ratio
of the two focal lengths (ρ = fx

fy
) and the coordinates of the

principal point (µx and µy). In general, both these parameters
can be estimated automatically by using the image of the mirror
border (circle or ellipse). Furthermore, only the goal value of
the interaction matrix is used to compute the velocities, which
allows avoiding the estimation of the depths of the points, as
well as the inversion of the interaction matrix, during servoing.

As a result of using a simple radial model, the proposed
IBVS method can be applied for a large class of catadioptric
cameras, both central and non-central. The proposed method
has been implemented using a ROS-based robotic platform.
The results obtained show the validity and effectiveness of the
proposed approach. Our future work includes extending the
method for a 6 DOFs robot and the use of global visual features
as well as multiple-view geometry in the control law.
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rotation is obtained using just visual features (corresponding to αm in (17))
and b: the rotation is measured by using IMU.
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